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A large class of proven discrete-time branching particle filters with Bayesian model 
selection capabilities and effective resampling is analyzed mathematically. The 
particles interact weakly in the branching procedure through the total mass process 
in such a way that the expected number of particles can remain constant. The 
weighted particle filter, which has no resampling, and the fully-resampled branching 
particle filter are included in the class as extreme points. Otherwise, selective 
residual branching is used allowing any number of offspring. Each particle filter 
in the class is coupled to a McKean–Vlasov particle system, corresponding to a 
reduced, unimplementable branching particle filter, for which Marcinkiewicz strong 
laws of large numbers (Mllns) and the central limit theorem (clt) can be written 
down. Coupling arguments are used to show the reduced system can be used to 
predict performance of and to transfer the Mllns to the real weakly-interacting 
residual branching particle filter. This clt is also shown transferable when (a few) 
extra particles are used.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Sequential Monte Carlo (SMC) algorithms are used in diverse problems like tracking, prediction, pa-
rameter estimation, model calibration, classification, Bayesian model selection and imaging (see e.g. [18,
17,13,9] for sample applications). Branching SMC algorithms have the advantage that offspring generation 
only depends upon the parent not the whole population and the disadvantage of having randomly-varying 
populations (i.e. particle numbers). Recently, Kouritzin [10] introduced four new classes of branching se-
quential Monte Carlo algorithms that were designed to limit wide particle variations. The tracking and 
model selection performance of all four algorithms was shown experimentally to be superior to a collection 
of popular resampled particle algorithms and these four branching algorithms have even greater advantages 
when it comes to distributed implementations (see Kouritzin [12]). However, there is little theory to back 
up these experimental findings. Theoretical rate-of-convergence results are desired to understand why these 
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algorithms perform so well and what their weaknesses might be. Unfortunately, the branching algorithms 
lack the independence and fixed particle numbers of many resampled algorithms so their analysis is neces-
sarily difficult and the desired convergence results hard to come by. Herein, we start the theoretical study 
by establishing Marcinkiewicz strong laws of large numbers (Mllns) and a central limit theorem (clt) for the 
residual branching algorithm, which is the simplest of the four branching algorithms introduced in [10]. We 
get around the lack of independence by using exchangeability techniques and by introducing an unrealizable 
approximate McKean–Vlasov particle system (originally motivated by the work of McKean [16]) which has 
independence.

The weighted particle filter, largely credited to Handschin [6] as well as Handschin and Mayne [7], ap-
proximates the unnormalized filter, denoted σn below. This weighted particle filter is the most basic particle 
filter and is embarrassingly computer parallelizable. However, it is well known to suffer particle spread issues 
that have to be corrected by branching or resampling. Branching particle filters, like those introduced by 
Crisan and Lyons [3], can have effective resampling yet still be highly parallelizable. Nonetheless, these early 
branching particle filters generally have very unstable particle numbers, which affect performance adversely. 
Recently, Kouritzin [10] introduced four successively more refined branching particle filters with the aim of 
reducing particle number fluctuations and thereby improving performance and reliability. Even the simplest 
of these four, the Residual Branching Particle Filter, was shown in [10,12] to avoid wild particle swings 
and to outperform many popular sequential Monte Carlo methods by a large amount. Herein, we analyze 
this Residual Branching Particle Filter by way of Marcinkiewicz strong laws of large numbers (Mllns) and 
the central limit theorem (clt). As a consequence, we also layout a framework for further analysis of the 
Residual Branching filter as well as the three more-complicated improvements of this filter given in [10].

The bootstrap particle filter algorithm was introduced in 1993 by Gordon, Salmond and Smith [5]. It has 
been improved by using residuals and stratified random variables. This collection resampled particle filters 
is one of the big breakthroughs in big data sequential estimation and their convergence properties have been 
thoroughly studied by many authors (see e.g. Douc et al. [4]). In particular, Chopin [2] obtained a clt for 
the residual improvement of the bootstrap algorithm. However, these particle filters approximate the actual 
filter πn not the unnormalized σn, do not have the (same degree of) ancestral dependence as the Residual 
Branching filter and base their resampling decisions upon the (locations of the) whole population. Hence, 
their analysis is quite different from what is required for the Residual Branching particle filter.

In terms of convergence results for branching filters to the unnormalized filter, Kouritzin and Sun [11]
obtain L2-rates of convergence for a partially-resampled branching algorithm. However, no other results 
were attained and their results are in a specific setting. From a mathematical perspective our work might be 
closest to Kurtz and Xiong [14,15]. Their work applies to a more general setting than nonlinear filtering but 
in the non-linear filtering setting it only considers the weighted particle filter. Consequently, substantially 
new methods are required herein. We make use of classical exchangeability works like Weber [19] and 
McKean–Vlasov equations as in [16]. However, several new (at least to particle filtering) ideas including 
branching particle filter coupling, use of infinite branching particle systems, use of tracking systems and 
Hoeffding-inequality-based particle system bounding are also utilized.

For motivational purposes, we consider tracking a non-observable, random, dynamic signal X given 
the history of a distorted, corrupted partial observation process Y living on the same probability space 
(Ω, F , P ) as X. For many practical problems the signal is a time-homogeneous discrete-time Markov process 
{Xn, n = 0, 1, 2, ...}, living on some complete, separable metric space (E, ρ), with initial distribution π0 and 
transition probability kernel K. The observation process takes the form (Y0 = 0 and) Yn = h (Xn−1) + Vn

for n ∈ N, where {Vn}∞n=1 are independent random vectors with common strictly positive, bounded density 
g that are independent of X, and the sensor function h is a measurable mapping from E to Rd. (Such g still 
allows popular observation noise like Gaussian or Cauchy distributed ones.) Then, the objective of filtering 
is to compute the conditional expectations πn (f) = EP

(
f (Xn)

∣∣FY
n

)
for all bounded, measurable functions 

f : E → R, where FY
n � σ{Yl, l = 1, ..., n} is the information obtained from the back observations.
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