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We consider a class of parabolic variational inequalities with time dependent obsta-
cle of the form |u(x, t)| ≤ p(x, t), where u is the velocity field of a fluid governed by 
the Navier–Stokes variational inequality. The obstacle function p = p(x, t), imposed 
on u, consists of three parts, which are respectively: the degenerate part p(x, t) = 0, 
the finitely positive part 0 < p(x, t) < ∞ and the singular part p(x, t) = ∞. 
In this paper, we shall propose a sequence of approximate obstacle problems with 
everywhere finitely positive obstacles, and prove an existence result for the original 
problem by discussing convergence of the approximate problems. The crucial step is 
to handle the nonlinear convection term. In this paper we propose a new approach 
to it.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In real problems, we find many dynamical processes which occur in fluids or in consequence of a fluid 
flow. Their mathematical models include then a hydrodynamic equation, typically Stokes or Navier–Stokes, 
coupled with some other evolution systems, such as heat convection [14,16], phase transitions [1] or biofilm 
growth [11,23]. These couplings may have the form of transport or advection, but they may also mean 
some evolution of the domain in which the flow takes place. To give just one example of phenomenon of 
importance to medicine and in which both types of couplings appear at the same time scale, let us have a 
look on the mentioned biomass growth. In a fluid transporting some living organisms and some appropriate 
nutrient, some of these organisms can stick to the boundary of the fluid flow’s domain (e.g. blood vessels 
walls) and then aggregate, in which way they gradually restrict the domain available for the flow, forming 
a geometrical obstacle to it.
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Mathematical analysis of models for such systems seems not easy, since the theory on partial differen-
tial systems coupled with equations, or variational inequalities, of the Navier–Stokes type has not been 
completely established.

In this paper, we address the problem of a Navier–Stokes flow constrained by some evolving in time 
obstacle. We model the obstacle as a non-negative function p, depending on the space and time variable, 
which is a bound imposed a priori on the velocity of the flow. The Navier–Stokes equation becomes then 
naturally a variational inequality. We allow the constraint to disappear (p = ∞, free flow), to be a total 
obstacle (p = 0, no flow) or only partial (0 < p < ∞). We assume that p is continuous. Our main result is 
Theorem 1.1 below, stating existence and some regularity of solution to this problem.

This kind of parabolic obstacle problem would be useful for mathematical modelling of various nonlinear 
problems in hydrodynamic fluids, see e.g. [2,9–11,18,19,21]. As far as variational inequalities of Navier–Stokes 
type are concerned, see e.g. [3–6,24,25] for a constant in time constraint, and [13], where the constraint can 
be time and space dependent. However, even this last case did not allow the “free flow” and “no-flow” 
regions, i.e. the obstacle function p had to be finite and bounded from below by a positive constant — 
a serious limitation of the model that we overcome in the present work. It is clear that especially allowing 
the “total obstacle” case, i.e. having regions where p = 0, is essential from the point of view of modelling; 
it is also the main challenge for the mathematical analysis that we are presenting.

For basic studies on Navier–Stokes equations and phase transitions, we refer to [27] and [8], respectively. 
Our formulation of the Navier–Stokes inequality arising from the obstacle, that we state in Definition 1.1
below, is analogous to these appearing in [3–6,24,25]. For its analysis, we will use the theory of subdifferentials 
contained in [7,17,22,28]. This will be exposed in Section 2.

Let us set the basic functional framework and explicit the assumptions so as to formulate the main 
result. Let Ω be a bounded domain in R3 with smooth boundary Γ := ∂Ω, Q := Ω × (0, T ), 0 < T < ∞
and Σ := Γ × (0, T ), and denote by | · |X the norm in various function spaces X built on Ω as well as by 
‖ · ‖Y for function spaces Y on Ω × (0, T ). Also, consider the usual solenoidal function spaces:

Dσ(Ω) := {v = (v(1), v(2), v(3)) ∈ D(Ω)3 | div v = 0 in Ω},

Hσ(Ω) := the closure of Dσ(Ω) in L2(Ω)3, with norm | · |0,2,

V σ(Ω) := the closure of Dσ(Ω) in H1
0 (Ω)3, with norm | · |1,2,

W σ(Ω) := the closure of Dσ(Ω) in W 1,4
0 (Ω)3, with norm | · |1,4;

in these spaces the norms are given as usual by

|v|0,2 :=

⎧⎨
⎩

3∑
k=1

∫
Ω

|v(k)|2dx

⎫⎬
⎭

1
2

, |v|1,2 :=

⎧⎨
⎩

3∑
k=1

∫
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|∇v(k)|2dx
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and

|v|1,4 :=

⎧⎨
⎩

3∑
k=1

∫
Ω

|∇v(k)|4dx

⎫⎬
⎭

1
4

.

For simplicity we denote the dual spaces of V σ(Ω) and W σ(Ω) by V ∗
σ(Ω) and W ∗

σ(Ω), respectively, which 
are equipped with their dual norms | · |−1,2 and | · |−1, 43 . Also, we denote the inner product in Hσ(Ω) by 
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