RESEARCH Open Access

CrossMark

Periodic orbits to Kaplan-Yorke like differential delay equations with two lags of ratio (2k-1)/2

Lin Li¹, Chunyan Xue^{1*} and Weigao Ge²

*Correspondence: xue_chunyan@126.com 1*School of Science, Beijing Information Science and Technology University, Beijing, 100192, P.R. China Full list of author information is available at the end of the article

Abstract

In this paper, we study the periodic solutions to a type of differential delay equations with two lags of ratio (2k - 1)/2 in the form

$$x'(t) = -f(x(t-2)) - f(x(t-(2k-1))), k \ge 2.$$

The 4k-periodic solutions are obtained by using the variational method and the method of Kaplan-Yorke coupling system. This is a new type of differential-delay equations compared with all previous researches since the ratio of two lags is not an integer. Three functionals are constructed for a discussion on critical points. An example is given to demonstrate our main results.

MSC: 34B10; 34B15

Keywords: differential delay equation; periodic solutions; critical point theory; variational method

1 Introduction

The differential delay equations have useful applications in various fields such as agestructured population growth, control theory, and any models involving responses with nonzero delays [1–5].

Given $f \in C^0(R^+, R^-)$ with f(-x) = -f(x), xf(x) > 0, $x \ne 0$. Kaplan and Yorke [6] studied the existence of 4-periodic and 6-periodic solutions to the differential delay equations

$$x'(t) = -f(x(t-1)) \tag{1.1}$$

and

$$x'(t) = -f(x(t-1)) - f(x(t-2)), \tag{1.2}$$

respectively. The method they applied is transforming the two equations into adequate ordinary differential equations by regarding the retarded functions x(t-1) and x(t-2) as independent variables. They guessed that the existence of 2(n+1)-periodic solution to the

equation

$$x'(t) = -\sum_{i=1}^{n} f(x(t-i))$$
 (1.3)

could be studied under the restriction

$$x(t-(n+1))=-x(t),$$

which was proved by Nussbaum [7] in 1978 by use of a fixed point theorem on cones.

After then, a lot of papers [8–21] discussed the existence and multiplicity of 2(n + 1)-periodic solutions to equation (1.3) and its extension

$$x'(t) = -\sum_{i=1}^{n} \operatorname{grad} F(x(t-i)), \tag{1.4}$$

where $F \in C^1(\mathbb{R}^N, \mathbb{R}), F(-x) = F(x), F(0) = 0$.

Recently, Zhang and Ge [22] studied the multiplicity of 2*n*-periodic solutions to a type of differential delay equations of the form

$$x'(t) = -f(x(t-1)) - f(x(t-n)), \quad n \ge 2,$$
(1.5)

and obtained new results.

In this paper, we study the periodic orbits to a type of differential delay equations with two lags of ratio (2k-1)/2 in the form

$$x'(t) = -f(x(t-2)) - f(x(t-(2k-1))), \quad k \ge 2,$$
(1.6)

which is different from (1.3) and can be regarded as a new extension of (1.2). The method applied in this paper is the variational approach in the critical point theory [23, 24].

Since the equation

$$x'(t) = -f(x(t-2)) - f(x(t-2k)), \quad k \ge 2,$$

can be changed into the form of equation (1.5) by the transformation

$$t = 2s$$
, $x(t) = x(2s) = y(s)$, $\widehat{f}(y) = 2f(x)$,

this paper completes the research of the equations in the form

$$x'(t) = -f(x(t-2)) - f(x(t-n)), \quad n \ge 3.$$
(1.7)

In fact, it follows from

$$y'(s) = 2x'(t) = -2f(x(t-2)) - 2f(x(t-2k)) = -2f(x(2(s-1))) - 2f(x(2(s-k)))$$

Download English Version:

https://daneshyari.com/en/article/5775268

Download Persian Version:

https://daneshyari.com/article/5775268

<u>Daneshyari.com</u>