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In this paper, we confirm several conjectured congruences of Sun concerning the 
divisibility of binomial sums. For example, with help of a quadratic hypergeometric 
transformation, we prove that
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≡ 0 (mod p2)

for any prime p ≡ 7 (mod 8), where Pk is the k-th Pell number. Further, we also 
propose three new congruences of the same type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In [10], with help of the Gross–Koblitz formula, Mortenson solved a conjecture of Rodriguez-Villegas [16]
as follows:
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for every odd prime p, where 
(

·
p

)
denotes the Legendre symbol. Subsequently, the similar congruences were 

widely studied. For the progress of this topic, the reader may refer to [11,12,14,6,17–19,8,20,7,4,21]. In [22], 
Sun proposed many conjectured congruences on the sums of binomial coefficients. Some of those conjectures 
are of the form
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For example, Sun conjectured that
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for any prime p ≡ 1 (mod 12), where χ3(k) equals to the Legendre symbol 
(
k
3
)
.

The main purpose of this paper is to confirm the following conjectures of Sun.

Theorem 1.1. Suppose that p is a prime.

(i) If p ≡ 3 (mod 4), then
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(ii) If p ≡ 1 (mod 12), then

p−1∑
k=0

(
p− 1
k

)(
2k
k

)2
χ3(k)
16k ≡ 0 (mod p2). (1.2)

(iii) If p ≡ 7 (mod 8), then
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where the Pell number Pk is given by

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2.

(iv) If p ≡ 11 (mod 12), then
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≡ 0 (mod p2), (1.4)

where Rk is given by

R0 = 2, R1 = 4, Rn = 4Rn−1 −Rn−2 for n ≥ 2.

We mention that (1.1), (1.2), (1.3) and (1.4) respectively belong to Conjecture 5.5 of [18] and Conjec-
tures A56, A57, A63 of [22].

The sequences {Pn} and {Rn} in Theorem 1.1 both belong to the second-order linear recurrence sequence. 
In general, define the Lucas sequences {Un(a, b)} and {Vn(a, b)} by

U0(a, b) = 0, U1(a, b) = 1, Un(a, b) = aUn−1(a, b) − bUn−2(a, b) for n ≥ 2,

and
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