

Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems

Zhongwei Tang ${ }^{*, 1}$, Lushun Wang
School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, PR China

A R T I C L E I N F O

Article history:

Received 18 August 2016
Available online xxxx
Submitted by Y. Du

Keywords:

Lyapunov-Schmidt reduction methods
Synchronized and segregated solution
Interior spikes
Elliptic systems

A B S T R A C T

In this paper, we consider the following nonlinear coupled elliptic systems

$$
\begin{cases}-\varepsilon^{2} \Delta u+u=\mu_{1} u^{3}+\beta u v^{2} & \text { in } \Omega \\ -\varepsilon^{2} \Delta v+v=\mu_{2} v^{3}+\beta u^{2} v & \text { in } \Omega \\ u>0, v>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\varepsilon>0, \mu_{1}>0, \mu_{2}>0, \beta \in \mathbb{R}$, and Ω is a bounded domain with smooth boundary in \mathbb{R}^{3}. Due to Lyapunov-Schmidt reduction method, we proved that $\left(\mathcal{A}_{\varepsilon}\right)$ has at least $O\left(\frac{1}{\varepsilon^{3}|\ln \varepsilon|}\right)$ synchronized and segregated vector solutions for ε small enough and some $\beta \in \mathbb{R}$. Moreover, for each $m \in(0,3)$ there exist synchronized and segregated vector solutions for $\left(\mathcal{A}_{\varepsilon}\right)$ with energies in the order of ε^{3-m}. Our result extends the result of Lin, Ni and Wei [20], from the Lin-Ni-Takagi problem to the nonlinear elliptic systems.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we study the following nonlinear elliptic systems

$$
\begin{cases}-\varepsilon^{2} \Delta u+u=\mu_{1} u^{3}+\beta u v^{2} & \text { in } \Omega \\ -\varepsilon^{2} \Delta v+v=\mu_{2} v^{3}+\beta u^{2} v & \text { in } \Omega \\ u>0, v>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.11.044
0022-247X/© 2016 Elsevier Inc. All rights reserved.
where $\varepsilon>0, \mu_{1}>0, \mu_{2}>0, \beta \in \mathbb{R}, \Omega$ is a bounded domain with smooth boundary in \mathbb{R}^{3}.
For $\Omega=\mathbb{R}^{N}, N \leq 3$ and $\varepsilon=1,\left(\mathcal{B}_{\varepsilon}\right)$ leads to investigate the following problem
\[

$$
\begin{cases}-\Delta u+u=\mu_{1} u^{3}+\beta u v^{2} & \text { in } \mathbb{R}^{N}, \tag{1.1}\\ -\Delta v+v=\mu_{2} v^{3}+\beta u^{2} v & \text { in } \mathbb{R}^{N}, \\ u>0, v>0 & \text { in } \mathbb{R}^{N}, \\ u \rightarrow 0, v \rightarrow 0 & \text { as } x \rightarrow+\infty .\end{cases}
$$
\]

Problem $\left(\mathcal{B}_{\varepsilon}\right)$ arises in the Hartree-Fock theory for a double condensate, i.e. a binary mixture of BoseEinstein condensates in two different hyperfine states $|1\rangle$ and $|2\rangle$ (see [9]). Physically, u and v are the corresponding condensate amplitudes. μ_{j} and β are the intraspecies and interspecies scattering lengths. The sign of scattering length β determines whether the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive or attractive. When $\beta>0$, the interactions of states $|1\rangle$ and $|2\rangle$ are attractive, the components of a vector solution tend to go along with each other, leading to synchronization. In contrast, when $\beta<0$, the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive, the components tend to segregate from each other, leading to phase separations.

Recently, B. Sirakov [24] discussed the whole $\beta \in \mathbb{R}$ and analyzed for which β the problem (1.1) assures a least energy solution and for which β the problem (1.1) has no least energy solution. In [31], Wei and Yao proved that for $0<\beta<\min \left\{\mu_{1}, \mu_{2}\right\}$ small and $\beta>\max \left\{\mu_{1}, \mu_{2}\right\}$, the solution of (1.1) is unique and non-degenerate. Furthermore, Peng and Wang [23] proved there exists a decreasing sequence $\left\{\beta_{k}\right\} \subset\left(-\sqrt{\mu_{1} \mu_{2}}, 0\right)$ with $\beta_{k} \rightarrow-\sqrt{\mu_{1} \mu_{2}}$, the solution of (1.1) is non-degenerate for $\beta \in\left(-\sqrt{\mu_{1} \mu_{2}}, 0\right) \cup\left(0, \min \left\{\mu_{1}, \mu_{2}\right\}\right) \cup\left(\max \left\{\mu_{1}, \mu_{2}\right\},+\infty\right)$ and $\beta \neq \beta_{k}$ for any k.

For the scalar case, there are many investigations to the following elliptic equations

$$
\begin{cases}-\varepsilon^{2} \Delta u+u=u^{p} & \text { in } \Omega \tag{1.2}\\ u>0, v>0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{n} and p is subcritical, i.e. $2<p<\frac{2 n}{n-2}$ for $n \geq 3$, and $2<p<+\infty$ for $n=1,2$. It is well known that problem (1.2) has both interior spike solutions and boundary spike solutions. For single interior spike solutions, we refer to $[7,28-30]$ and references therein. For multiple interior spikes solutions, we refer to $[4,5,15]$ and references therein. For single boundary spike solutions, we refer to $[8,19,21,22]$ and references therein. For multiple boundary spikes solutions, we refer to $[6,13,16,17]$ and references therein. By Lyapunov-Schmidt reduction method, Gui and Wei [14] constructed a solution to (1.2) with both k interior spikes and l boundary spikes for any $k \geq 0, l \geq 0, k+l>0$ and $\varepsilon>0$ small enough.

We also want to mention the paper by Lin, Ni and Wei [20], where the authors showed that there exists ε_{0} such that for each $0<\varepsilon<\varepsilon_{0}$ and for each integer k bounded by $1 \leq k \leq \frac{C(\Omega, n)}{\varepsilon^{n}(\ln \varepsilon)^{n}},(1.2)$ has a solution with k-interior spikes. Recently, Ao, Wei and Zeng [1] promoted the upper bound of the number of interior spikes to $\frac{C(\Omega, n)}{\varepsilon^{n}}$ which is optimal due to the fact that each spike contributes to at least $O\left(\varepsilon^{n}\right)$ energy.

For the singularly perturbed nonlinear Schrödinger equations, we want to refer the readers to the work by Felmer, Martinez and Tanaka [10,11], where in 1-dimensional situation, they considered the following problem

$$
\begin{equation*}
\varepsilon^{2} \Delta u-V(x) u+u^{p}=0, u>0, u \in H^{1}(\mathbb{R}) \tag{1.3}
\end{equation*}
$$

They constructed a solution to (1.3) with $\frac{C}{\varepsilon}$ spikes for some $V(x)$.

https://daneshyari.com/en/article/5775275

Download Persian Version:

https://daneshyari.com/article/5775275

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: tangzw@bnu.edu.cn (Z. Tang).
 ${ }^{1}$ The first author was supported by National Science Foundation of China (11571040).

