ARTICLE IN PRESS

J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

ELSEVIER

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

YJMAA:20897

www.elsevier.com/locate/jmaa

Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems

Zhongwei Tang^{*,1}, Lushun Wang

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, PR China

ARTICLE INFO

Article history: Received 18 August 2016 Available online xxxx Submitted by Y. Du

Keywords: Lyapunov–Schmidt reduction methods Synchronized and segregated solution Interior spikes Elliptic systems АВЅТ КАСТ

In this paper, we consider the following nonlinear coupled elliptic systems

	$\int -\varepsilon^2 \Delta u + u = \mu_1 u^3 + \beta u v^2$	in Ω ,	
ł	$-\varepsilon^2 \Delta v + v = \mu_2 v^3 + \beta u^2 v$	in Ω ,	$(\mathcal{A}_{arepsilon})$
	u > 0, v > 0	in Ω ,	
	$\int \frac{\partial u}{\partial u} = \frac{\partial v}{\partial u} = 0$	on $\partial \Omega$,	

where $\varepsilon > 0$, $\mu_1 > 0$, $\mu_2 > 0$, $\beta \in \mathbb{R}$, and Ω is a bounded domain with smooth boundary in \mathbb{R}^3 . Due to Lyapunov–Schmidt reduction method, we proved that $(\mathcal{A}_{\varepsilon})$ has at least $O(\frac{1}{\varepsilon^3 |\ln \varepsilon|})$ synchronized and segregated vector solutions for ε small enough and some $\beta \in \mathbb{R}$. Moreover, for each $m \in (0,3)$ there exist synchronized and segregated vector solutions for $(\mathcal{A}_{\varepsilon})$ with energies in the order of ε^{3-m} . Our result extends the result of Lin, Ni and Wei [20], from the Lin–Ni–Takagi problem to the nonlinear elliptic systems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we study the following nonlinear elliptic systems

$$\begin{cases} -\varepsilon^2 \Delta u + u = \mu_1 u^3 + \beta u v^2 & \text{in } \Omega, \\ -\varepsilon^2 \Delta v + v = \mu_2 v^3 + \beta u^2 v & \text{in } \Omega, \\ u > 0, v > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{on } \partial \Omega, \end{cases}$$

$$(\mathcal{B}_{\varepsilon})$$

Please cite this article in press as: Z. Tang, L. Wang, Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2016.11.044

 $[\]ast\,$ Corresponding author.

E-mail address: tangzw@bnu.edu.cn (Z. Tang).

 $^{^1\,}$ The first author was supported by National Science Foundation of China (11571040).

http://dx.doi.org/10.1016/j.jmaa.2016.11.044 0022-247X/© 2016 Elsevier Inc. All rights reserved.

Z. Tang, L. Wang / J. Math. Anal. Appl. $\bullet \bullet \bullet$ ($\bullet \bullet \bullet \bullet$) $\bullet \bullet \bullet - \bullet \bullet \bullet$

where $\varepsilon > 0$, $\mu_1 > 0$, $\mu_2 > 0$, $\beta \in \mathbb{R}$, Ω is a bounded domain with smooth boundary in \mathbb{R}^3 . For $\Omega = \mathbb{R}^N$, N < 3 and $\varepsilon = 1$, $(\mathcal{B}_{\varepsilon})$ leads to investigate the following problem

$$\begin{aligned} & \begin{pmatrix} -\Delta u + u = \mu_1 u^3 + \beta u v^2 & \text{in } \mathbb{R}^N, \\ & -\Delta v + v = \mu_2 v^3 + \beta u^2 v & \text{in } \mathbb{R}^N, \\ & u > 0, v > 0 & \text{in } \mathbb{R}^N, \\ & u \to 0, v \to 0 & \text{as } x \to +\infty. \end{aligned}$$

$$(1.1)$$

Problem $(\mathcal{B}_{\varepsilon})$ arises in the Hartree–Fock theory for a double condensate, i.e. a binary mixture of Bose– Einstein condensates in two different hyperfine states $|1\rangle$ and $|2\rangle$ (see [9]). Physically, u and v are the corresponding condensate amplitudes. μ_j and β are the intraspecies and interspecies scattering lengths. The sign of scattering length β determines whether the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive or attractive. When $\beta > 0$, the interactions of states $|1\rangle$ and $|2\rangle$ are attractive, the components of a vector solution tend to go along with each other, leading to synchronization. In contrast, when $\beta < 0$, the interactions of states $|1\rangle$ and $|2\rangle$ are repulsive, the components tend to segregate from each other, leading to phase separations.

Recently, B. Sirakov [24] discussed the whole $\beta \in \mathbb{R}$ and analyzed for which β the problem (1.1) assures a least energy solution and for which β the problem (1.1) has no least energy solution. In [31], Wei and Yao proved that for $0 < \beta < \min\{\mu_1, \mu_2\}$ small and $\beta > \max\{\mu_1, \mu_2\}$, the solution of (1.1) is unique and non-degenerate. Furthermore, Peng and Wang [23] proved there exists a decreasing sequence $\{\beta_k\} \subset (-\sqrt{\mu_1\mu_2}, 0)$ with $\beta_k \rightarrow -\sqrt{\mu_1\mu_2}$, the solution of (1.1) is non-degenerate for $\beta \in (-\sqrt{\mu_1\mu_2}, 0) \cup (0, \min\{\mu_1, \mu_2\}) \cup (\max\{\mu_1, \mu_2\}, +\infty)$ and $\beta \neq \beta_k$ for any k.

For the scalar case, there are many investigations to the following elliptic equations

$$\begin{cases} -\varepsilon^2 \Delta u + u = u^p & \text{in } \Omega, \\ u > 0, v > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.2)

where Ω is a smooth bounded domain in \mathbb{R}^n and p is subcritical, i.e. $2 for <math>n \geq 3$, and 2 for <math>n = 1, 2. It is well known that problem (1.2) has both interior spike solutions and boundary spike solutions. For single interior spike solutions, we refer to [7,28–30] and references therein. For multiple interior spikes solutions, we refer to [4,5,15] and references therein. For single boundary spike solutions, we refer to [8,19,21,22] and references therein. For multiple boundary spikes solutions, we refer to [6,13,16,17] and references therein. By Lyapunov–Schmidt reduction method, Gui and Wei [14] constructed a solution to (1.2) with both k interior spikes and l boundary spikes for any $k \geq 0$, $l \geq 0$, k + l > 0 and $\varepsilon > 0$ small enough.

We also want to mention the paper by Lin, Ni and Wei [20], where the authors showed that there exists ε_0 such that for each $0 < \varepsilon < \varepsilon_0$ and for each integer k bounded by $1 \le k \le \frac{C(\Omega,n)}{\varepsilon^n(\ln \varepsilon)^n}$, (1.2) has a solution with k-interior spikes. Recently, Ao, Wei and Zeng [1] promoted the upper bound of the number of interior spikes to $\frac{C(\Omega,n)}{\varepsilon^n}$ which is optimal due to the fact that each spike contributes to at least $O(\varepsilon^n)$ energy.

For the singularly perturbed nonlinear Schrödinger equations, we want to refer the readers to the work by Felmer, Martinez and Tanaka [10,11], where in 1-dimensional situation, they considered the following problem

$$\varepsilon^2 \Delta u - V(x)u + u^p = 0, u > 0, u \in H^1(\mathbb{R}).$$

$$(1.3)$$

They constructed a solution to (1.3) with $\frac{C}{\varepsilon}$ spikes for some V(x).

Please cite this article in press as: Z. Tang, L. Wang, Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2016.11.044

 $\mathbf{2}$

Download English Version:

https://daneshyari.com/en/article/5775275

Download Persian Version:

https://daneshyari.com/article/5775275

Daneshyari.com