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The relaxation limit from bipolar semiconductor hydrodynamic (HD) model to 
drift–diffusion (DD) model is shown under the non-constant doping profile assump-
tion for both stationary solutions and global-in-time solutions, which satisfy the gen-
eral form of the Ohmic contact boundary condition. The initial layer phenomenon 
will be analyzed because the initial data is not necessarily in the momentum equilib-
rium. Due to the bipolar coupling structure, the analysis is hard and different from 
the previous literature on unipolar model or bipolar model with zero doping profile 
restriction. We first construct the non-constant uniform stationary solutions by the 
operator method for both HD and DD models in a unified procedure. Then we prove 
the global existence of DD model and uniform global existence of HD model by the 
elementary energy method but with some new developments. Based on the above 
existence results, we further calculate the convergence rates in relaxation limits.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following bipolar isothermal hydrodynamic (HD) model for semiconductors⎧⎪⎪⎨
⎪⎪⎩
nit + jix = 0, (a)
jit +

(
j2
i /ni + Kini

)
x

= (−1)i−1niφx − ji/τ, (b)
φxx = n1 − n2 −D(x), i = 1, 2, ∀(t, x) ∈ (0,+∞) × Ω, (c)

(1.1)

where Ω := (0, 1) is a bounded interval occupied by the semiconductor device. The unknown functions 
ni(t, x) and ji(t, x) stand for the charge density, current distribution for electrons (i = 1) and holes (i = 2)
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respectively, and φ is the electrostatic potential. The positive constants τ , K1 and K2 are the relaxation time, 
temperature constant of electrons and temperature constant of holes respectively. The given function D(x)
means the non-constant doping profile, the density of impurities in semiconductor devices. Mathematically, 
the system (1.1) takes the form of the compressible fluids coupled with self-consistent Poisson equation, 
which leads to a hyperbolic–elliptic system.

In the present paper, we are interested in the behavior of solutions of the bipolar HD model (1.1) as the 
relaxation time τ → 0+. Thus, we suppose τ ∈ (0, 1] and introduce a scaling of time s = τt and define

nτ
i (s, x) = ni

( s
τ
, x
)
, jτi (s, x) = 1

τ
ji

( s
τ
, x
)
, φτ (s, x) = φ

( s
τ
, x
)
. (1.2)

Substituting the scaling transform (1.2) into the original HD model (1.1) and setting again t = s, we 
obtain the scaled HD model⎧⎪⎪⎨

⎪⎪⎩
nτ
it + jτix = 0, (a)

τ2jτit +
(
τ2(jτi )2/nτ

i + Kin
τ
i

)
x

= (−1)i−1nτ
i φ

τ
x − jτi , (b)

φτ
xx = nτ

1 − nτ
2 −D(x), i = 1, 2, ∀(t, x) ∈ (0,+∞) × Ω. (c)

(1.3)

From now on, we only consider the scaled HD model (1.3) and also call it the HD model. The system 
(1.3) is complemented by the initial and boundary data

(nτ
i , j

τ
i )(0, x) = (ni0, ji0)(x), (1.4)

and

nτ
i (t, 0) = nil > 0, nτ

i (t, 1) = nir > 0, (1.5a)

φτ (t, 0) = 0, φτ (t, 1) = φr > 0, (1.5b)

where nil, nir and φr are positive constants. The physical boundary condition (1.5) is called the Ohmic 
contact boundary condition. Since we intend to establish the existence of a classical solution to the initial–
boundary value problem (IBVP for abbreviation) (1.3)–(1.5), it is necessary to assume that the initial data 
(1.4) are compatible with the boundary data (1.5). Namely,

ni0(0) = nil, ni0(1) = nir, ji0x(0) = ji0x(1) = 0. (1.6)

Formally substituting τ = 0 into the HD model (1.3) and expressing the solution of the limit system by 
(n0

1, j
0
1 , n

0
2, j

0
2 , φ

0), we have the bipolar drift–diffusion (DD) model

⎧⎪⎪⎨
⎪⎪⎩
n0
it + j0

ix = 0, (a)
j0
i = (−1)i−1n0

iφ
0
x −Kin

0
ix, (b)

φ0
xx = n0

1 − n0
2 −D(x), i = 1, 2, ∀(t, x) ∈ (0,+∞) × Ω. (c)

(1.7)

The initial and boundary data for the DD model (1.7) are given by

n0
i (0, x) = ni0(x), (1.8)

and
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