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Presented here is a study of long-term behavior of Mindlin–Timoshenko (RMT) 
plate systems, focusing on the interplay between nonlinear viscous boundary 
damping and boundary source terms. This work complements [28] which established 
local well-posedness of this problem, and global well-posedness when the boundary 
damping dominates the boundary sources (in an appropriate sense). The current 
paper develops the potential well theory for the RMT system: global existence 
for potential well solutions without restricting the boundary source exponents, 
and explicit energy decay rates dependent on the boundary damping exponents. 
This work along with [26–28] provides the fundamental well-posedness and stability 
theory for MT plates under the interplay of damping and source terms acting either 
in the interior or on the boundary of the plate.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The system of equations proposed by R. Mindlin [19] for describing mechanical vibrations stands among 
the most popular fundamental plate theory models. It can be viewed as a generalization of the Timoshenko 
beam to thin plates; also a similar model had been developed independently by E. Reissner. Thus, historically 
this framework could be referenced as Reissner–Mindlin–Timoshenko (RMT) plate theory:
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• Ω: mid-surface of the plate in equilibrium, occupying a subset of the (x, y)-plane;
• w: point-wise vertical displacement of the mid-surface;
• ψ: rotation angle of the filaments in the xz-plane;
• φ: rotation angle of the filaments in the yz-plane;
• h is the (uniform) plate thickness;
• ρ is the (constant) mass density per unit of surface area;

• D = Eh3

12(1 − μ2) is the modulus of flexural rigidity;

• E is Young’s modulus;
• μ is Poisson’s ratio (0 < μ < 1/2 in physical situation);

• K = kEh

2(1 + μ) is the shear modulus; the factor k here is called the shear correction coefficient, it is 

introduced to account for the fact that the shearing strains are not uniform over a cross section of the 
plate.

RMT equations refine the classical Kirchhoff–Love model by taking into account shear deformations and 
thus relax the assumption that the filaments of the plate must remain perpendicular to its mid-plane. This 
formulation is substantially more accurate at high frequencies and when describing thicker plates, the RMT 
model has attracted a lot of research efforts.

There is an ample collection of work on the subject devoted to theoretic developments and numerical anal-
ysis, see for instance [2,7–10,13,21,22,24,25,31] and many references therein (for more detailed information, 
refer, for instance to the introductory sections in [26–28]).

The discussion of nonlinear damping-source interactions for a wave equation is initiated by Lasiecka and 
Tataru [14] and by Georgiev and Todorova [6], however, there has been less focus on the interaction of 
nonlinear sources and damping terms within the RMT framework. In 2015, [26,27] studied well-posedness 
and stability of RMT plate systems, focusing on the interaction between nonlinear interior damping and 
interior source terms.

This article complements [28] which previously addressed: local well-posedness of the system with bound-
ary damping and boundary sources and global well-posedness when damping exponents dominate those of 
the sources. The present article:

• develops the potential well theory for the RMT model, proving global well-posedness for appropriate 
potential well solutions in presence of unrestricted boundary sources,

• establishes asymptotic uniform energy decay rates and their dependence on the damping nonlinearities.

1.1. The model

In the MT model the state of the system is represented by a vector-valued function u = (w, ψ, φ) which 
depends on position vector x = (x, y) and time t ≥ 0. The component w = w(x, t) corresponds to the 
vertical displacement of the plate’s mid-surface at point x time t, whereas ψ and φ are proportional to 
the angles of the plate filaments transversal to the mid-surface. Throughout the paper we assume that the 
mid-surface of the plate Ω ⊂ R

2 is a bounded open domain of class C2 (hence has uniform C2 regularity 
property, see [28] for detailed explanation of boundary regularity). The MT system reads:

{
utt − divS(u) + Q(u) = 0 in Ω × (0, T ),
Sν(u) + u + (G (ut)) = (F (u)) on Γ × (0, T ),

(1.1)

with Cauchy data prescribed in the finite energy space (H1(Ω))3 × (L2(Ω))3, i.e.,
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