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Given the continuous real-valued objective function f and the discrete time 
inhomogeneous Markov process Xt defined by the recursive equation of the form 
Xt+1 = Tt(Xt, Yt), where Yt is an independent sequence, we target the problem of 
finding conditions under which the Xt converges towards the set of global minimums 
of f . Our methodology is based on the Lyapunov function technique and extends 
the previous results to cover the case in which the sequence f(Xt) is not assumed 
to be a supermartingale. We provide a general convergence theorem. An application 
example is presented: the general result is applied to the Simulated Annealing 
algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let (A, d) be a compact metric space. Assume that f : A → R is the continuous problem function with 
global minimum min f = 0 and A� = {x ∈ A : f(x) = 0} is the set of the solutions of the global minimization 
problem. The last decades have witnessed the great development of iterative numerical techniques designed 
for finding an element from A�. The most popular methods are: genetic and evolutionary algorithms [33,32,
5,31], inspired by the mechanisms of biological evolution, Simulated Annealing algorithm (SA) [4,39,19–21,
1], which is based on analogy with the physical process of annealing, and methods based on the swarm 
intelligence of individuals [15] like Particle Swarm Optimization (PSO) [10,9] or Ant Colony Optimization 
(ACO) [13]. Those methods, and many other iterative heuristics, [3,16,23,30,40,41] are used in practice for 
solving difficult real world problems for which analytical methods fail. The corresponding literature puts 
great attention to the numerical aspect of the subject. From the theoretical perspective, majority of such 
optimization techniques can be represented as discrete-time inhomogeneous Markov processes of the form

xt+1 = Tt(xt, yt), for t ∈ N, (1.1)
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where the sequence xt represents the successive states of the algorithm, yt represents the probability dis-
tributions of the algorithm and Tt stands for the deterministic “mechanisms” of the algorithm. Recursions 
of the form (1.1) have been studied in many contexts, including control theory, iterated function systems 
(IFS), fractals, and other applications. Various examples can be found, for instance, in [24,11,14,18]. Gen-
erally speaking, the standard analysis of processes (1.1) concerns the problem of the existence and the 
convergence to the unique stationary distribution. This paper continues the research taken in the series of 
papers [26,25,27,38,37] which aim at the problem how to prove that the process given by equation (1.1)
converges towards A� under conditions that can be verified in practical cases.

General results on global convergence are often based on the classical probability theory [36,29]. Markov 
chains theory is used to prove the convergence towards A� in some cases, see for example [33] or [1]. 
An important class of global optimization methods is methods with the supermartingale property – we 
shortly say that an optimization method Xt is a supermartingale if the corresponding sequence of record 
values f(Xt) is a supermartingale. In this case stochastic Lyapunov functions arise quite naturally as a tool 
ensuring stability of the process Xt, see Chapter VIII in [2] for general framework or [34] for an example 
from evolutionary optimization. Previous papers [26,25,27,38,37] work under assumption E(f(Tt(x, Yt))|
Xt = x) ≤ f(x), x ∈ A, which implies that they also aim at the supermartingale class. The general 
methodology used there was to consider the nonautonomous dynamical system on the set M(A) of Borel 
probability measures on A (the system is induced by equation (1.1)) and next to prove the asymptotic 
stability of the set M� = {μ ∈ M(A) : μ(A�) = 1}. One of the basic tools used in the proof was the 
Lyapunov function given by V : M(A) � μ →

∫
A

fdμ ∈ [0, ∞). This paper extends this methodology to cover 

the case of non-supermartingales. For instance, Simulated Annealing algorithm and Evolution Algorithms 
with non-elitist selection strategies belong to the class of non-supermartingales. The main result of this 
paper is Theorem 2. Theorem 3, which is the conclusion of Theorem 2, is less general but easier to use 
and still covers some important practical cases like Simulated Annealing and many non-ellitist evolutionary 
methods. To present how the general results work in practice Theorem 2 is applied to the SA algorithm. 
The SA convergence result is expressed in Theorem 4.

This paper is organized as follows. Section 2 presents some general equivalences between basic modes of 
stochastic global convergence. These general results are rather easy to prove but according to the author’s 
knowledge such general statements are not formulated in literature (special cases are proved separately 
in various papers). Section 3 presents and discusses the main results of this paper, Theorem 2, and its 
conclusion, Theorem 3. Section 4 applies Theorem 3 to the Simulated Annealing algorithm. Section 5
presents some facts on the weak convergence of Borel probability measures and Section 6 presents some 
ideas expressed in the language of dynamical systems and necessary for the proof of the main result. Finally, 
Section 7 uses the results of Sections 5 and 6 to prove Theorem 2. Appendix presents the proofs of results 
from Section 2.

2. Some equivalences for stochastic global convergence

This section presents some general equivalences for stochastic global convergence and introduces corre-
sponding notation which will be used in further sections. Although this paper targets the compact case 
situation, the general results of this section are presented under assumption that the metric space A is sep-
arable. The results are rather simple but they generalize many partial observations stated in the literature 
and will be used further in this paper. The corresponding proofs can be found in Appendix.

We denote:

(1) A� = {x ∈ A : f(x) = 0},
(2) Aδ = {x ∈ A : f(x) ≤ δ}, where δ > 0,
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