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Abstract

We prove boundary inequalities for conjugate differential forms in C1-domains.
They extend the classical Riesz inequalities for conjugate harmonic functions.
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1. Introduction

The following inequality due to M. Riesz [12], involving the real and the
imaginary part of holomorphic functions of one complex variable, is very well
known:

‖g‖Lp(S) ≤ C‖f‖Lp(S), (1.1)

(1 < p < ∞) the function f + ig being holomorphic in the unit disc D,
continuous up to the boundary S = ∂D, and g(0) = 0. Inequality (1.1) plays
a key role in harmonic analysis.

Another inequality related to (1.1) concerns normal derivative ∂
∂ν

and
tangential gradient grad∂Ω of a harmonic function defined on a sufficiently
smooth bounded domain Ω ⊂ R

n. Namely, we have∥∥∥∥∂ω∂ν
∥∥∥∥
Lp(∂Ω)

≤ C‖grad∂Ω ω‖Lp(∂Ω), (1.2)

for any harmonic function ω ∈ C1(Ω) ∩ C2(Ω). Inequality (1.2) was proved
by Vishik [18] for p = 2 when ∂Ω is a sphere, conjectured by Mikhlin in [11,

∗Corresponding author.
Email addresses: cialdea@email.it (A. Cialdea),

silveriofrancesco@hotmail.com (F. Silverio)

Preprint submitted to Journal of Mathematical Analysis and ApplicationsNovember 30, 2016



Download English Version:

https://daneshyari.com/en/article/5775295

Download Persian Version:

https://daneshyari.com/article/5775295

Daneshyari.com

https://daneshyari.com/en/article/5775295
https://daneshyari.com/article/5775295
https://daneshyari.com

