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In this paper, by using Karamata regular variation theory, we study the exact 
asymptotic behavior of entire large solutions to Δu = b(x)f(u), x ∈ R

N (N ≥ 3), 
where b ∈ C(RN) is nonnegative and nontrivial in RN , f ∈ C([0, ∞)) is positive and 
non-decreasing on (0, ∞), which satisfies Keller–Osserman condition and is rapidly 
varying or regularly varying at infinity with index γ ≥ 1.
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1. Introduction and main results

The purpose of this paper is to investigate the exact asymptotic behavior of entire large solutions (or 
entire blow-up solutions) to the following elliptic equations

Δu = b(x)f(u), (1.1)

where x ∈ R
N (N ≥ 3), and an entire large solution (or entire blow-up solution) of Eq. (1.1) means that 

u ∈ C2(RN ) solves Eq. (1.1) and lim|x|→∞ u(x) = ∞. In this paper, we are supposing that f satisfies

(f1) f is continuous and nondecreasing on [0, ∞) with f(0) = 0 and f(t) > 0 if t > 0;
(f2) the Keller–Osserman condition

∞∫
1

(2F (t))−1/2dt < ∞, F (t) =
t∫

0

f(s)ds

holds.
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Moreover, we further assume that f ∈ RVγ (γ ≥ 1) or f satisfies the following condition

(f3) limt→∞((F (t))1/2)′
∫∞
t

(F (s))−1/2ds = 1.

Let b satisfy

(b1) b ∈ C(RN ) is nonnegative in RN ;
(b2) there exist k ∈ K and constant λ ≥ 2 such that

0 < b1 := lim inf
|x|→∞

b(x)
|x|−λk(|x|) ≤ b2 := lim sup

|x|→∞

b(x)
|x|−λk(|x|) < ∞

and

∞∫
t0

s1−λk(s)ds < ∞,

where K denotes the set of Karamata functions k defined on [t0, ∞) by

k(t) := c exp
( t∫

t0

y(s)
s

ds

)
, t > t0 > 0

with c > 0 and y ∈ C([t0, ∞)) such that limt→∞ y(t) = 0.

The Eq. (1.1) arises from many branches of mathematics and applied mathematics, for instance, Rieman-
nian geometry, applied statistics, mathematical physics and population dynamics and has been discussed 
extensively by many authors in different contexts.

Let Ω be a bounded domain with C2-boundary in RN (N = 2). If b ≡ 1 in Ω, f(u) = eu, Bieberbach [6]
first studied the existence, uniqueness and asymptotic behavior of large solutions to Eq. (1.1), where “large 
solution” is understood as u solves Eq. (1.1) in Ω and

u|∂Ω = ∞, i.e., lim
x→∂Ω

u(x) = ∞.

The above solutions are also called “boundary blow-up solutions”. Then, Rademacher [39], using the ideas 
of Bieberbach, showed that the results still hold for N = 3. When f(u) = eu and b is continuous and strictly 
positive on Ω̄, Lazer and McKenna [28] extended the above results in a bounded domain Ω in RN (N ≥ 1)
with a uniform outer sphere condition. On the other hand, Keller [22] and Osserman [37] carried out a 
systematic research on Eq. (1.1) and obtain the following important results for the existence of classical 
large solutions:

(i) If Ω ⊆ R
N is a bounded domain, b ≡ 1 on Ω̄ and f satisfies (f1), then Eq. (1.1) possesses a large solution 

u ∈ C2(Ω) if and only if the Keller–Osserman condition (f2) holds.
(ii) If b ≡ 1 in RN , f satisfies (f1), then Eq. (1.1) possesses an entire large solution if and only if the 

condition (f2) false, i.e.,

∞∫
1

(2F (t))−1/2dt = ∞. (1.2)
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