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SEVERAL CONSTRUCTIONS IN THE EREMENKO-LYUBICH

CLASS

KIRILL LAZEBNIK

Abstract. We use a theorem of Bishop in [Bis15] to construct several func-
tions in the Eremenko-Lyubich class B. First it is verified, that in Bishop’s
initial construction [Bis15] of a wandering domain in B, all wandering Fatou
components must be bounded. Next we modify this construction to produce
a function in B with wandering domain and uncountable singular set. Finally
we construct a function in B with unbounded wandering Fatou components.
It is shown that these constructions answer two questions posed in [OS16].
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1. Introduction

From the dynamical viewpoint, an entire function f : C → C partitions the plane
into two sets. There is the Fatou set, denoted F(f), that consists of the points where
the family (fn)n≥1 is normal. And there is the Julia set - the complement of the
Fatou set, denoted J (f). The Fatou set is open, and its components are called the
Fatou components of f . The Fatou components are the regions of the plane where
the dynamics of f are non-chaotic.

It is not difficult to see that F(f) is invariant under iteration by f . If we denote
U as a component of the Fatou set, it is natural to study the behavior of the forward
iterates fn(U). We use the following definition: U is called periodic if fn(U) ⊆ U
for some n, and preperiodic if U is eventually mapped into a periodic component.
On the other hand U is called a wandering domain if fn(U) ∩ fm(U) = ∅ over all
n �= m.

Dennis Sullivan proved in [Sul85] that wandering domains do not occur for poly-
nomials. On the other hand for more general entire functions, wandering domains
are known to exist. We call a function f : C → C transcendental if f is entire but is
not a polynomial. The first example of a transcendental function with a wandering
domain was in fact produced before Sullivans’ result - this was given by Baker in
[Bak76].
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