# The sequence of open and closed prefixes of a Sturmian word ${ }^{\text {th }}$ 

Alessandro De Luca ${ }^{\text {a }}$, Gabriele Fici ${ }^{\text {b,* }}$, Luca Q. Zamboni ${ }^{\text {c }}$<br>${ }^{\text {a }}$ DIETI, Università degli Studi di Napoli Federico II, Italy<br>${ }^{\text {b }}$ Dipartimento di Matematica e Informatica, Università di Palermo, Italy<br>${ }^{\text {c }}$ Université Claude Bernard Lyon 1, France

## A R T I C L E I N F O

## Article history:

Received 28 December 2016
Received in revised form 22 April
2017
Accepted 23 April 2017
Available online xxxx

## MSC:

68R15
Keywords:
Sturmian word
Closed word


#### Abstract

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the ocsequence of a word, which is the binary sequence whose $n$-th element is 0 if the prefix of length $n$ of the word is open, or 1 if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their ocsequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages. We then discuss several aspects of Sturmian words that can be expressed through this sequence. Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.


© 2017 Elsevier Inc. All rights reserved.

[^0]
## 1. Introduction

In a recent paper with M. Bucci [5], the first two authors dealt with trapezoidal words (a generalization of finite Sturmian words), also with respect to the property of being closed or open. Let $\Sigma$ be a finite nonempty set (the alphabet). A (finite) word $w=w[1] w[2] \cdots w[n]$ with $w[i] \in \Sigma$ is closed (also known as periodic-like [6]) if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. For example, the words $a b c a, a b a b a$ and $a a b a a b$ are closed - any word of length 1 is closed, the empty word being a factor that occurs both as a prefix and as a suffix but does not have internal occurrences; the words $a b, a a b$ and $a a b a$, instead, are open.

Given a finite or infinite word $w=w[1] w[2] \cdots$, the sequence $\operatorname{oc}(w)$ of open/closed prefixes of $w$, that we refer to as the oc-sequence of $w$, is the binary sequence $c(1) c(2) \cdots$ whose $n$-th element is 1 if the prefix of $w$ of length $n$ is closed, 0 if it is open. For example, if $w=a b c a b$, then $\operatorname{oc}(w)=10011$.

A question that arises naturally is whether it is possible to reconstruct a word (up to renaming letters) from its oc-sequence. This is not true in general, even when the alphabet is binary. For example, the words $a a b a$ and $a a b b$ are not isomorphic (i.e., one cannot be obtained from the other by renaming letters), yet they have the same oc-sequence 1100. As a first result of this paper, we show that if a word is known to be Sturmian, then it can be reconstructed (up to renaming letters) from its oc-sequence. That is, Sturmian words are characterized by their oc-sequences. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages.

In [5], the authors investigated the structure of the sequence oc $(F)$ of the Fibonacci word $F$. They proved that the lengths of the runs (maximal subsequences of consecutive equal elements) in $\operatorname{oc}(F)$ form the doubled Fibonacci sequence. We prove in this paper that this doubling property holds for every standard Sturmian word, and describe the sequence oc $(w)$ of a standard Sturmian word $w$ in terms of the semicentral prefixes of $w$, which are the prefixes of the form $u_{n} x y u_{n}$, where $x, y$ are letters and $u_{n} x y$ is an element of the standard sequence of $w$. As a consequence, we show that the word $b a^{-1} w$, obtained from a standard Sturmian word $w$ starting with letter $a$ by replacing the first letter with a $b$, can be written as the infinite product of the words $\left(u_{n}^{-1} u_{n+1}\right)^{2}, n \geq 0$. Since the words $u_{n}^{-1} u_{n+1}$ are reversals of standard words, this induces an infinite factorization of $b a^{-1} w$ in squares of reversed standard words.

We then show how the oc-sequence of a standard Sturmian word of slope $\alpha$ is related to the continued fraction expansion of $\alpha$, both in terms of the convergents and of the continuants of $\alpha$.

Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.

# https://daneshyari.com/en/article/5775373 

Download Persian Version:

## https://daneshyari.com/article/5775373

## Daneshyari.com


[^0]:    ${ }^{4}$ Some of the results contained in this paper were presented at the 9th International Conference on Words, WORDS 2013 [9].

    * Corresponding author.

    E-mail addresses: alessandro.deluca@unina.it (A. De Luca), gabriele.fici@unipa.it (G. Fici), lupastis@gmail.com (L.Q. Zamboni).

