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Let 1 ≤ k ≤ n. Sharp volume inequalities for k-dimensional 
sections of Wulff shapes and dual inequalities for projections 
are established. As their applications, several special Wulff 
shapes are investigated.
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1. Introduction

Throughout, all Borel measures are understood to be nonnegative and finite. A convex 
body in R

n is a compact convex set containing the origin in its interior. The polar body 
of a convex body K is given by K∗ = {x ∈ R

n : x · y ≤ 1 for all y ∈ K}, where x · y
denotes the standard inner product of x and y in Rn. We use ‖ ·‖ to denote the Euclidean 
norm on Rn. When A is a compact convex set in R

n, we write |A| for the volume of A in 
the appropriate subspace. Let supp ν denote the support of a measure ν and let PH be 
the orthogonal projection onto a subspace H of Rn.

Volume estimates for sections of convex bodies in Rn are not easy, even in specific 
cases. For the cube Qn = [−1

2 , 
1
2 ]n, Hensley [10] first showed that if H is a hyperplane 

of Rn then |H ∩ Qn| lies between 1 and 5, and conjectured that the upper bound is at 
most

√
2. This conjecture was solved by Ball [1,2], who also settled the more general 

case of k-dimensional sections.
The example of the regular simplex is much more complicated. Webb [25] proved 

that the maximal central hyperplane section is the one containing n − 1 vertices and 
the centroid. The question about the minimal central hyperplane section has not been 
completely solved yet. Brzezinski [7] proved a lower bound which differs from the con-
jectured minimal volume by a factor of approximately 1.27. For general k-dimensional 
sections, these questions were recently considered by Dirksen [8]. Other examples, such 
as �np -balls [5,6,20], complex cubes [22] and non-central sections of cubes [21], have also 
been investigated.

In this paper, we will study sections and projections of more general convex bodies 
than cubes and simplices. The main objects we consider are Wulff shapes [23], which were 
introduced by Wulff in 1901. Nowadays, it is an important notion in convex geometric 
analysis (see, e.g., [23]).

Definition. Suppose that ν is a Borel measure on Sn−1 and that f is a positive, bounded, 
and measurable function on Sn−1. The Wulff shape Wν,f determined by ν and f is defined 
by

Wν,f := {x ∈ R
n : x · u ≤ f(u) for all u ∈ supp ν}. (1.1)

The measure ν is said to be even if it assumes the same value on antipodal sets. 
When ν and f are both even, then Wν,f is origin-symmetric. It is easy to see that Wν,f

is always convex and may be unbounded. In order for a k-dimensional subspace H of Rn, 
to guarantee that |Wν,f | and |H ∩Wν,f | are finite, we consider Wulff shapes determined 
by measures ν which are isotropic and f -centered with respect to H. A Borel measure ν
on Sn−1 is called isotropic if

∫
Sn−1

u⊗ udν(u) = In, (1.2)
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