

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

The automorphism group of the *s*-stable Kneser graphs $\stackrel{\Rightarrow}{\approx}$

APPLIED MATHEMATICS

霐

Pablo Torres

Universidad Nacional de Rosario and CONICET, Rosario, Argentina

ARTICLE INFO

Article history: Received 15 September 2015 Received in revised form 20 March 2017 Accepted 5 April 2017 Available online 13 April 2017

MSC: 05C99 05E99

Keywords: Stable Kneser graph Automorphism group

ABSTRACT

For $k, s \ge 2$, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of $\{1, \ldots, n\}$ such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for $n \ge 2k + 1$ the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for $s \ge 2$ and $n \ge sk+1$ the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given a graph G, V(G), E(G) and $\operatorname{Aut}(G)$ denote its vertex set, edge set and automorphism group, respectively. Let $[n] := \{1, 2, 3, \ldots, n\}$. For positive integers n and ksuch that $n \ge 2k$, the Kneser graph $\operatorname{KG}(n, k)$ has as vertices the k-subsets of [n] with edges defined by disjoint pairs of k-subsets. A subset $S \subseteq [n]$ is s-stable if any two of its

 $^{^{*}}$ Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), PID CONICET 2015-0277, PICT-2012-1324 and PICT-2015-2218.

E-mail address: ptorres@fceia.unr.edu.ar.

elements are at least "at distance s apart" on the n-cycle, i.e. $s \leq |i - j| \leq n - s$ for distinct $i, j \in S$. For $s, k \geq 2$, we denote $[n]_s^k$ the family of s-stable k-subsets of [n]. The s-stable Kneser graph KG $(n, k)_{s-\text{stab}}$ [6,10] is the subgraph of KG(n, k) induced by $[n]_s^k$.

In a celebrated result, Lovász [5] proved that the chromatic number of $\mathrm{KG}(n,k)$, denoted $\chi(\mathrm{KG}(n,k))$, is equal to n-2k+2, verifying a conjecture due to M. Kneser [3]. After this result, Schrijver [7] proved that the chromatic number remains the same for $\mathrm{KG}(n,k)_{2-\mathrm{stab}}$. Moreover, this author showed that $\mathrm{KG}(n,k)_{2-\mathrm{stab}}$ is χ -critical. Due to these facts, the 2-stable Kneser graphs have been named *Schrijver graphs*. These results were the base for several papers devoted to Kneser graphs and stable Kneser graphs (see e.g. [1,4,6,8–10]). In addition, it is well known that for $n \geq 2k + 1$ the automorphism group of the Kneser graph $\mathrm{KG}(n,k)$ is isomorphic to S_n , the symmetric group of order n(see [2] for a textbook account).

More recently, in 2010 Braun [1] proved that the automorphism group of the Schrijver graphs $KG(n,k)_{2-\text{stab}}$ is isomorphic to the dihedral group of order 2n, denoted D_{2n} . In this paper we generalize this result by proving that the automorphism group of the *s*-stable Kneser graphs is isomorphic to D_{2n} , for $n \geq sk + 1$.

Firstly, notice that if n = sk, the s-stable Kneser graph $KG(n, k)_{s-\text{stab}}$ is isomorphic to the complete graph on s vertices and the automorphism group of $KG(n, k)_{s-\text{stab}}$ is isomorphic to S_s .

From the definitions we have that D_{2n} injects into Aut(KG $(n,k)_{s-\text{stab}}$), as D_{2n} acts on KG $(n,k)_{s-\text{stab}}$ by acting on [n]. Then, we have the following fact.

Remark 1.1. $D_{2n} \subseteq \operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}}).$

In the sequel, the arithmetic operations are taken *modulo* n on the set [n] where n represents the 0. Let us recall an important result due to Talbot.

Theorem 1.2 (Theorem 3 in [8]). Let n, s, k be positive integers such that $n \geq sk$ and $s \geq 3$. Then, every maximum independent set in $\operatorname{KG}(n, k)_{s-\text{stab}}$ is of the form $\mathcal{I}_i = \{I \in [n]_s^k : i \in I\}$ for a fixed $i \in [n]$.

For $n \ge sk + 1$ we observe that $\{i, i + s, i + 2s, \dots, i + (k - 1)s\}$ and $\{i, i + s + 1, i + 2s + 1, \dots, i + (k - 1)s + 1\}$ belong to $[n]_s^k$ for all $i \in [n]$. Then, we can easily obtain the following fact.

Remark 1.3. Let $n \ge sk + 1$ and $i, j \in [n]$. If $i \ne j$, then $\mathcal{I}_i \ne \mathcal{I}_j$.

2. Automorphism group of $KG(n, k)_{s-stab}$

This section is devoted to obtain the automorphism group of $KG(n, k)_{s-\text{stab}}$. To this end, let us introduce the following graph family. Let n, s, k be positive integers such that $n \ge sk + 1$. We define the graph G(n, k, s) with vertex set [n] and two vertices $i, j \in [n]$ Download English Version:

https://daneshyari.com/en/article/5775421

Download Persian Version:

https://daneshyari.com/article/5775421

Daneshyari.com