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How does the brain encode spatial structure? One way is 
through hippocampal neurons called place cells, which become 
associated to convex regions of space known as their receptive 
fields: each place cell fires at a high rate precisely when the 
animal is in the receptive field. The firing patterns of multiple 
place cells form what is known as a convex neural code. 
How can we tell when a neural code is convex? To address 
this question, Giusti and Itskov identified a local obstruction, 
defined via the topology of a code’s simplicial complex, and 
proved that convex neural codes have no local obstructions. 
Curto et al. proved the converse for all neural codes on at 
most four neurons. Via a counterexample on five neurons, we 
show that this converse is false in general. Additionally, we 
classify all codes on five neurons with no local obstructions. 
This classification is enabled by our enumeration of connected 
simplicial complexes on 5 vertices up to isomorphism. Finally, 
we examine how local obstructions are related to maximal 
codewords (maximal sets of neurons that co-fire). Curto et al. 
proved that a code has no local obstructions if and only 
if it contains certain “mandatory” intersections of maximal 
codewords. We give a new criterion for an intersection of 
maximal codewords to be non-mandatory, and prove that it 
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classifies all such non-mandatory codewords for codes on up 
to five neurons.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The brain’s ability to navigate within and represent the physical world is fundamental 
to our everyday experience and ability to function. How does the brain accomplish this? 
For their work shedding light on this question, neuroscientists John O’Keefe, May Britt 
Moser, and Edvard Moser won the 2014 Nobel Prize in Physiology and Medicine. Their 
work led to the discovery of place cells, grid cells, and head direction cells, all of which 
take part in rodents’ and other animals’ mechanisms for representing, navigating through, 
and forming memories of their environments.

This paper focuses on place cells, which are hippocampal neurons which become as-
sociated to regions of the environment known as their receptive fields or place fields. 
When an animal is located in a place cell’s receptive field, the place cell fires at a higher 
rate than when the animal is outside the place field. The firing patterns of a collection 
of place cells describe an animal’s position within its environment. These receptive fields 
have been experimentally observed to be approximately convex regions of space. Convex 
codes are those neural codes (firing patterns) that can arise from the activity of place 
cells with convex receptive fields.

Which neural codes are convex? What are signatures of convexity or non-convexity? 
Curto et al. [3,4] and Giusti and Itskov [5] addressed these questions using combina-
torial topology and commutative algebra, and gave complete answers for codes on up 
to four neurons. Curto et al. achieved this classification by organizing neural codes ac-
cording to their simplicial complexes, and, additionally, by focusing on local obstructions
to convexity. Earlier, Giusti and Itskov had introduced this concept and proved that 
codes with local obstructions are necessarily non-convex. Curto et al. proved that local 
obstructions have the following interpretation: for each simplicial complex Δ, there is 
a set of “mandatory” codewords whose presence in a code (whose simplicial complex 
is Δ) is required to avoid local obstructions [3]. Therefore, a code must contain all its 
mandatory codewords to be convex. Moreover, the mandatory codewords are necessarily 
intersections of maximal codewords. This motivates the following questions:

Question 1.1. Is every code which has no local obstructions convex?

Question 1.2. Is every intersection of maximal codewords a mandatory codeword?

Question 1.3. For codes on five neurons, which have local obstructions? Which are con-
vex?
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