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a b s t r a c t 

Finite element model updating techniques are used to update the finite element model of a 

structure in order to improve its correlation with the experimental dynamic test data. This 

paper presents an efficient iterative method for finite element matrix updating problem in 

a hysteretic damping model based on a few of complex measured vibration modal data. 

By using the proposed iterative method, the unique symmetric solution can be obtained 

within finite iteration steps in the absence of roundoff errors by choosing a special kind of 

initial matrix triple. Some theorems are stated and proved, numerical results show that the 

presented method can be used to update finite element models to get better agreement 

between analytical and experimental modal parameters. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Highly accurate analytical structural models are necessary for analyzing and predicting the dynamic performance of com- 

plex structures. By the finite element technique, an n degrees of freedom spatial model with structural damping can be 

described by the second order differential equation as 

M a ̈q (t) + (K a + iH a ) q (t) = 0 , (1) 

where i = 

√ −1 , M a , K a ∈ R 

n × n and H a ∈ R 

n × n are respectively analytical mass, stiffness, and hysteretic damping matrices, 

q ( t ) ∈ R 

n × 1 is the displacement vector. In general, M a , H a and K a are all real-valued symmetric. Eq. (1) is usually known as 

the finite element analytical model. Separation of variables q (t) = xe ωt in Eq. (1) , leads to structural eigenproblem: 

λM a x + (K a + iH a ) x = 0 , (2) 

where λ = ω 

2 . 

With the development of computational mechanics and modern computer technology, the finite element method is use- 

ful for many applications in engineering practice such as structural response prediction, structural control, structural health 

monitoring, reliability and risk assessment, etc. [1–5] . But there are some inaccuracies or uncertainties that may be associ- 

ated with a finite element model. The discretization error, arising due to the approximation of a continuous structure by a 

finite number of individual elements, is inherent to the finite element technique. While other inaccuracies may be due to 

the difficulties in the modeling of joints, boundary conditions and damping–the dynamic modelling of a structure often has 

∗ Corresponding author. 

E-mail address: yuanyx_703@163.com (Y. Yuan). 

https://doi.org/10.1016/j.amc.2017.09.022 

0 096-30 03/© 2017 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2017.09.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2017.09.022&domain=pdf
mailto:yuanyx_703@163.com
https://doi.org/10.1016/j.amc.2017.09.022


Y. Yuan et al. / Applied Mathematics and Computation 320 (2018) 86–98 87 

to incorporate some kind of damping, in order to simulate adequately and accurately the real behaviour of the structure. 

The most widely used models for representing the damping are the viscous and the hysteretic ones. Idealization and simpli- 

fication of structural details and lack of knowledge of exact material properties lead to a significant discrepancy may exist 

between the modal properties calculated by the constructed finite element model and those identified from the vibration 

measurements of the actual structure. Many investigations show that the differences between the numerical and experi- 

mental frequencies may exceed 10% or sometimes even 40% [5,6] . Nowadays, the appearances of high precision aircrafts and 

spacecrafts, large-scale bridges and other new engineering structures impose higher demands on the reliability and accuracy 

of their initial models [7] . The problem of how to modify an analytical model from the dynamic measurements is known 

as the model updating in structural dynamics. Finite element model updating is a procedure to identify and correct uncer- 

tain modelling parameters based on the experimental results that leads to better predictions of the dynamic behaviour of a 

target structure. 

Model updating has been an active area of research for the last three decades and various methods have been developed 

for correcting analytical models to predict test results more closely. Interested readers are referred to survey papers [8,9] . A 

detailed theoretical analysis of model updating techniques can be found in the authoritative book [4] . For example, Baruch 

and Bar-Itzhack [10,11] obtained a closed-form solution of the updated stiffness matrix by using Lagrange multipliers for 

minimizing the changes in the stiffness matrix to satisfy specified constraints under the assumption that the mass matrix 

is exact. Baruch [12] and Berman and Nagy [13] developed the analytical model improvement procedures to update the 

mass matrix and stiffness matrix alternately. Wei [14,15] presented the formulations to correct both the mass and stiffness 

matrices based on constrained minimization theory. These early methods are direct and computationally efficient and mainly 

aim at undamped systems. 

Due to the important contribution of damping on structural vibration, model updating of damped structures becomes 

significant. In recent years, the model updating problems for linear viscously damped elastic systems (or gyroscopic sys- 

tems) and nonlinear damped systems have been considered by many authors (see [16–25] , etc.). However, problems for 

updating hysteretic damping models have received little attention in these years. It is well known that the main difference 

between viscous and hysteretic damping models is that, for the viscous system, the energy dissipation per cycle depends 

linearly upon the frequency of oscillation, whereas for the hysteretic case it is independent of frequency. Although much 

progress has been made in recent years in the development of analytical procedures for evaluating the response of hys- 

teretic damping models [26–30] , very few authors pay attention to hysteretic damping model updating problems because 

the free vibration response for a system with hysteretic damping is necessarily complex, whereas the modal data of vis- 

cously damped elastic systems are closed under complex conjugation. In [31] , authors provided an extended application 

of the constrained eigenstructure assignment method (CEAM), which was first introduced in [32] , to finite element model 

updating. The existing formulation was modified to accommodate larger systems by developing a quadratic linear optimiza- 

tion procedure which is unconditionally stable. Further refinements included the updating of the mass matrix, a hysteretic 

damping model, and the introduction of elemental correction factors. 

We observe that the iterative methods for finite element coefficient matrix updating have received little attention in 

these years. In this paper, we will develop a finite iterative updating method for finite element models with hysteretic 

damping which can incorporate the measured modal data into the initial analytical model to produce an adjusted finite 

element model on the mass, damping and stiffness matrices that closely match the experimental modal data. We believe 

that the method proposed can be applied to other types of dynamical systems (for example, [33,34] ) with some suitable 

modifications. 

Assume that M a , K a and H a are all real-valued symmetric matrices, the problem of updating mass, stiffness and hys- 

teretic damping matrices simultaneously can be mathematically formulated as following inverse eigenvalue problem and an 

associated optimal approximation problem. 

Problem IEP. Let � = diag { γ1 , . . . , γp } ∈ C 

p×p and Z = [ z 1 , . . . , z p ] ∈ C 

n ×p be the measured eigenvalue and eigenvector ma- 

trices, where p � n . Find real-valued symmetric matrices M , H and K such that 

MZ� + (K + iH) Z = 0 . (3) 

Problem II. Let S E be the solution set of Problem IEP. Find ( ˆ M , ˆ H , ˆ K ) ∈ S E such that 

‖ 

ˆ M − M a ‖ 

2 + ‖ ̂

 K − K a ‖ 

2 + ‖ ̂

 H − H a ‖ 

2 = min 

(M,H,K) ∈S E 
(‖ M − M a ‖ 

2 + ‖ K − K a ‖ 

2 + ‖ H − H a ‖ 

2 ) . (4) 

The paper is organized as follows. In Section 2 , an efficient iterative method is presented to solve Problem IEP and Prob- 

lem II, and several properties of Algorithm 1 are proved. By using the proposed iterative method, the minimum Frobenius 

norm solution of Problem II can be obtained by choosing a special kind of initial matrix triple. In Section 3 , a numerical 

example is used to test the effectiveness of the proposed algorithm. Some concluding remarks are given in Section 4 . 

Throughout this paper, we shall adopt the following notation. C 

m × n and R 

m × n denote the set of all m × n complex and 

real matrices, and the set of all symmetric matrices in R 

n × n by SR 

n × n . A 

� , tr( A ) and R (A ) stand for the transpose, the 

trace and the column space of the matrix A , respectively. I n represents the identity matrix of order n . For A , B ∈ R 

m × n , an 

inner product in R 

m × n is defined by (A, B ) = tr (B � A ) , then R 

m × n is a Hilbert space. The matrix norm ‖ · ‖ induced by the 

inner product is the Frobenius norm. Given two matrices A = [ a i j ] ∈ R 

m ×n and B ∈ R 

p × q , the Kronecker product of A and B 

is defined by A � B = [ a i j B ] ∈ R 

mp×nq . Also, for an m × n matrix A = [ a 1 , a 2 , . . . , a n ] , where a i , i = 1 , . . . , n, is the i th column 
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