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a b s t r a c t 

Despite matrix completion requiring the global solution of a non-convex objective, there 

are many computational efficient algorithms which are effective for a broad class of matri- 

ces. Based on these algorithms for matrix completion with given rank problem, we propose 

a class of two-stage iteration algorithms for general matrix completion in this paper. The 

inner iteration is the scaled alternating steepest descent algorithm for the fixed-rank ma- 

trix completion problem presented by Tanner and Wei (2016), the outer iteration is used 

two iteration criterions: the gradient norm and the distance between the feasible part with 

the corresponding part of reconstructed low-rank matrix. The feasibility of the two-stage 

algorithms are proved. Finally, the numerical experiments show the two-stage algorithms 

with shorting the distance are more effective than other algorithms. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

From the pioneering work on low-rank approximation by Fazel [10] as well as on matrix completion by Candès and 

Recht [7] , there has been a lot of study (see [1–26] and references therein) both from theoretical and algorithmic aspects 

on the problem of recovering a low-rank matrix from partial entries-also known as matrix completion. The problem occurs 

in many areas of engineering and applied science such as model reduction [18] , machine learning [1,2] , control [20] , pattern 

recognition [9] , imaging inpainting [3] and computer vision [23] and so on. There is a rapidly growing interest for this issue. 

Explicitly seeking the lowest rank matrix consistent with the known entries is mathematically expressed as: 

min 

Z∈ R 

m ×n 
rank (Z) 

subject to P �(Z) = P �(Z 0 ) , (1) 

where the matrix Z 0 ∈ R 

m ×n is the underlying matrix to be reconstructed, � is a random subset of indices for the known 

entries, and P � is the associated sampling orthogonal projection operator which acquires only the entries indexed by � ⊂
{ 1 , 2 , . . . , m } × { 1 , 2 , . . . , n } . 

Since a manifold of rank r matrices can be factorized into a bi-linear form Z = XY where X ∈ R 

m ×r and Y ∈ R 

r×n , a 

few algorithms have been presented to solve (1) while the rank r was known or can be estimated [18,19] . The general 
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problem (1) , however, is non-convex and is NP-hard [12] due to the rank objective. Vandereycken [24] applied the Rie- 

mannian optimization to the problem by minimizing the least square distance on the sampling set over the Riemannian 

manifold of matrix Z 0 . Then a Riemannian geometry method and a Riemannian trust-region method were given by Mishra 

et al. [21] and Boumal et al. [5] , respectively. Evidently, the computation of a gradient is expensive in method, and then 

several methods resulted in alternating optimization and XY were raised [8,15,22] . 

On the other hand, Candés and Rechat [7] replaced the rank objective in (1) with its convex relaxation, the nuclear norm 

‖ Z ‖ ∗ which is the sum of all singular values of matrix Z , that is 

min 

Z∈ R 

m ×n 
‖ Z‖ ∗ (2) 

subject to P �(Z) = P �(Z 0 ) . 

Alternative to the convex optimization, there have been many algorithms which are designed to attempt to solve for the 

global minimum of (1) directly; many of them are adaptations of algorithms for compressed sensing, such as the hard 

thresholding algorithms [4,14,16] , the singular value thresholding (SVT) method as well as its variants [6,13,25] . However, 

the computations of a partial singular value decomposition (SVD) were required at each iteration in the most direct im- 

plementation of these algorithms. The computational cost of computing the SVD has complexity of O ( n 3 ) when the rank r 

and matrix-size n are proportional, resulting in computing the SVD to be the dominant computational cost at each itera- 

tion and then limits their applicability for large n . In addition, Lin et al. [17] proposed an augmented Lagrange multiplier 

(ALM) method which performs better both in theory and algorithms than the others that with a Q-linear convergence speed 

globally. 

Recently, based on the simple factorization Z = XY where X ∈ R 

m ×r and Y ∈ R 

r×n , mentioned above, rather than solving 

(1) , algorithms are designed to compute the non-convex problem 

min 

X,Y 
f (X, Y ) (3) 

with f (X, Y ) := 

1 
2 ‖ P �(Z 0 ) − P �(XY ) ‖ 2 

F 
. In fact, the model (3) replaced the rank objective in (1) with the distance between a 

matrix and an r -dimensional manifold for the fixed-rank problem. Algorithms for the solution of (3) with the distance objec- 

tive usually follow an alternating minimization scheme, with PowerFactorization [11] and LMaFit [26] two representatives. 

Tanner and Wei [22] proposed an alternating steepest descent (ASD), and a scaled variant (ScaledASD) methods in 2016. In 

so doing ASD and ScaledASD [22] are able to recover matrices of substantially higher rank than can LMaFit [26] . However, 

the rank of most of completing is unknown such that we have to estimate it in advance or approximate it from a lower rank 

until satisfying P �(Z 0 ) = P �(XY ) . In this study, we first define the distance between a matrix and the r -dimensional mani- 

fold and then come up with a class of two-stage iteration algorithms for the case that the rank r was unknown. The rank is 

increased either one-by-one until the optimal rank r is obtained for a lower rank (say, be estimated) model or by combining 

l jumping-space with one-by-one until the optimal rank r is obtained for a larger rank (say, be estimated) model. The inner 

iteration finds the matrix which is up to the shortest or approximation shortest distance and the outer iteration finds the 

optimal r -dimensional manifold with two kinds criterion. The convergence theory of the new algorithms are studied. 

The rest of the paper is organized as follows. A class of two-stage iteration algorithms for the case that the rank r 

was unknown is proposed in Section 2 . The convergence of the new algorithms are discussed in Section 3 . The numerical 

experiments are shown and comparison to algorithms in Section 4 . Finally, we end the paper with a concluding remark in 

Section 5 . 

Here are some necessary notations and preliminaries. R 

m ×n is used to denote the m × n real matrix set, and R 

n the n - 

dimensional real vector set. X 

T denotes the transpose of the matrix or vector X . The Frobenius norm is denoted by ‖ X ‖ F . For 

a matrix X = (x 1 , x 2 , . . . , x n ) ∈ R 

m ×n , dim( X ) is always used to represent dimensions of the manifold of fixed-rank matrix X 

and rank( X ) represents the rank of a matrix X . Let � ⊂ { 1 , 2 , . . . , m } × { 1 , 2 , . . . , n } denote the indices of the observed entries 

of the matrix X , �̄ denote the indices of the missing entries. Then P � be the orthogonal projection operator on the span of 

matrices vanishing outside of �. So that the ( i , j )th component of P �(X ) is equal to X ij when ( i , j ) ∈ �, and zero otherwise. 

Also, Z r = { Z ∈ R 

m ×n : rank (Z) = r} stands for the r -dimensional manifold of fixed-rank matrices. 

The one-to-one correspondence between a matrix and its projection enables us to devise a notation of distance between 

a matrix and an r -dimensional manifold as follows. 

Definition 1.1. For a matrix Y ∈ R 

m ×n , 

d(Y r ) = min ‖ Y − Z‖ 

2 
F (4) 

is called distance between a matrix Y and an r -dimensional manifold Z r . That is essentially the distance between matrix Y 

and its projection onto the r -dimensional manifold Z r . 

We trivially give the distance between a feasible matrix and its projection onto the r -dimensional manifold for introduc- 

ing the new iteration algorithms. 

For P �(Y ) = P �(Z 0 ) , we called d(Y r ) = min 

dim (Z)= r 
‖ Y − Z‖ 2 

F 
as a distance between a feasible matrix Y and an r -dimensional 

manifold Z r . 

Evidently, it should be noted that min d ( Y r ) > 0 if r < min rank( Z ) and min d(Y r ) = 0 if r = min rank (Z) . To obtain the 

min d ( Y r ), some algorithms are presented by combining the model (1) and (4) . 
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