Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10

Donglei Yang ${ }^{\text {a }}$, Lin Sun ${ }^{\text {a,b }}$, Xiaowei Yu ${ }^{\text {a,* }}$, Jianliang Wu ${ }^{\text {a }}$, Shan Zhou ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, 250100 Jinan, Shandong, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Changji University, 831100 Changji, PR China
${ }^{\text {c }}$ School of Mathematics and Statistics, Jiangsu Normal University, 221116 Xuzhou, PR China

A R T I C L E I N F O

Keywords:

Neighbor sum distinguishing total coloring Planar graph
Combinatorial Nullstellensatz
Discharging

Abstract

Given a simple graph G, a proper total-k-coloring $\phi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ is called neighbor sum distinguishing if $S_{\phi}(u) \neq S_{\phi}(v)$ for any two adjacent vertices $u, v \in V(G)$, where $S_{\phi}(u)$ is the sum of the color of u and the colors of the edges incident with u. It has been conjectured by Pilśniak and Woźniak that $\Delta(G)+3$ colors enable the existence of a neighbor sum distinguishing total coloring. The conjecture is confirmed for any graph with maximum degree at most 3 and for planar graph with maximum degree at least 11 . We prove that the conjecture holds for any planar graph G with $\Delta(G)=10$. Moreover, for any planar graph G with $\Delta(G) \geq 11, \Delta(G)+2$ colors guarantee such a total coloring, and the upper bound $\Delta(G)+2$ is tight.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A multigraph is irregular if no degrees of two vertices are equal. In an arbitrary simple graph, there exist two vertices with the same degree. The commonly known basic fact has brought forth a number of implicative questions. In particular an issue of a possible definition of an irregular graph was raised by Chartrand [3]. A multigraph can be viewed as a weighted simple graph with nonnegative-integer weights on the edges. That is, the weighting $c_{1}: E(G) \rightarrow\{1,2, \ldots, k\}$, assigning every edge an integer corresponding to its multiplicity in a desired multigraph, where by $d_{c_{1}}(v)=\sum_{u v \in E(G)} c_{1}(u v)$ we denote the degree of $v \in V(G)$. The least k such that there do not exist two different vertices with the same degree in such a coloring of the simple graph G is called irregularity strength of G. The irregular strength was studied in numerous papers, e.g., $[13,15]$. Moreover, it is the cornerstone of many graph invariants and a new general direction in research on vertex distinguishing graph colorings.

In this paper, we consider the following interesting problem. Given a simple graph G and a proper total-k-coloring $\phi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$. For every $v \in V$ denote by $S_{\phi}(v)$ the sum of the colors of edges incident with v and the color of v. If $S_{\phi}(u) \neq S_{\phi}(v)$ holds for every edge $u v \in E(G)$, then ϕ is total neighbor sum distinguishing, or tnsd-k-coloring for simplicity. If $u v \in E(G)$ and $S_{\phi}(u)=S_{\phi}(v)$, then we say u conflicts with v with respect to ϕ. The neighbor sum distinguishing total chromatic number $\chi_{\Sigma}^{\prime \prime}(G)$ of G is the least k which guarantees the existence of a tnsd- k-coloring for G. Pilśniak and Woźniak put forward the following conjecture.
Conjecture 1.1 [14]. For any graph $G, \chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$.

[^0]It is worth mentioning that the concept investigated in this article was also inspired by another famous problem in the field of vertex distinguishing colorings of graphs. Given a total-k-coloring ϕ of $G, C_{\phi}(u)$ is the set of the color of vertex u and the colors of the edges incident with u. We say ϕ is total adjacent vertex distinguishing or total-avd-k-coloring for G if $C_{\phi}(u) \neq C_{\phi}(v)$ for any two adjacent vertices $u, v \in V(G)$, and we write $\chi_{a}^{\prime \prime}(G)$ for the least k that guarantees the existence of such a total-avd- k-coloring. In 2005, Zhang [21] proposed the following conjecture.

Conjecture 1.2 [21]. For any graph G with at least two vertices, $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
Coker and Johannson [5] used a probabilistic method to establish an upper bound $\Delta+C$ for $\chi_{a}^{\prime \prime}(G)$, where C is a positive constant. Conjecture 1.2 was confirmed for planar graphs with large maximum degree [20].

The Conjecture 1.1 might be viewed as a significant generalization of Conjecture 1.2. Pilśniak and Woźniak [14] proved that Conjecture 1.1 holds for complete graphs, cycles, bipartite graphs and subcubic graphs. Applying the Combinatorial Nullstellensatz, Ding et al. [6] proved that $\chi_{\Sigma}^{\prime \prime}(G) \leq 2 \Delta(G)+\operatorname{col}(G)-1$, where $\operatorname{col}(G)$ is the color number of G. Later Ding et al. [7] improved it to $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+2 \operatorname{col}(G)-2$. Recently, Przybyło proved that $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+\left\lceil\frac{5}{3} \operatorname{col}(G)\right\rceil$ in [16]. Loeb and Tang [12] proved this bound to be asymptotically correct by showing that $\chi_{\Sigma}^{\prime \prime}(G) \leq(1+o(1)) \Delta(G)$. Meanwhile, Li et al. [10] proved that Conjecture 1.1 holds for planar graphs with $\Delta(G) \geq 13$. Qu et al. extended it to the list version in [17]. For more results, the reader is referred to [8,9,11]. Recently, Qu et al. proved that Conjecture 1.1 holds for planar graphs with $\Delta(G)=11$ and $\Delta(G)=12$ [18]. Cheng et al. proved a stronger conclusion in the following theorem.

Theorem 1.1 [4]. For any planar graph G with maximum degree $\Delta(G) \geq 14, \chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+2$.
Meanwhile, Song et al. considered the case when $\Delta(G) \geq 12$, and obtained the following result.
Theorem 1.2 [19]. For any planar graph G with maximum degree $\Delta(G) \geq 12, \chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+2$.
It is straightforward to see that the upper bound $\Delta(G)+2$ in Theorems 1.1 and 1.2 is tight if there exist two adjacent vertices with maximum degree in G.

In this paper, we provide a completely new argument proving a new result simultaneously improving all known bounds.
Theorem 1.3. For any planar graph G with maximum degree $\Delta(G), \chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+2,13\}$.
Theorem 1.3 implies Theorem 1.1 and the following corollary.
Corollary 1.1. For any planar graph G with maximum degree $10, \chi_{\Sigma}^{\prime \prime}(G) \leq 13$.

2. Preliminaries

For all terminologies and notations used but undefined in this paper, we follow [2]. Given a plane graph G on the Euclidean plane, we write $F(G)$ for the face set of G. For simplicity, we shall refer to a vertex of degree k (at least k, at most k) as a k-vertex (k^{+}-vertex, k^{-}-vertex) and a face of degree k (at least k, at most k) as a k-face (k^{+}-face, k^{-}-face), respectively. We write $n_{k}^{G}(u)$ for the number of k-vertices adjacent to u, and analogically we define $n_{k^{+}}^{G}(u), n_{k^{-}}^{G}(u)$. A k-vertex v is a bad k-neighbor of u if the edge $u v$ is incident with two 3-faces, and v is a special k-neighbor of u if the edge $u v$ is incident with exactly one 3 -face. Analogically, we write $n_{k b}^{G}(u)$ and $n_{k s}^{G}(u)$ for the number of bad and special k-neighbors adjacent to u, respectively. The superscript character G is often omitted if there is no ambiguity by the context. A triangle $u v w$ is a $[k, l$, $m]$-cycle if $d_{G}(u)=k, d_{G}(v)=l$ and $d_{G}(w)=m$.

3. Proof of Theorem 1.3

For any graph G, set $n_{i}(G)=|\{v \mid \operatorname{deg}(v)=i\}|$ for $i=1,2, \ldots, \Delta(G)$. A graph G^{\prime} is smaller than the graph G if any of the following is true.

- $\left|E\left(G^{\prime}\right)\right|<|E(G)| ;$
- $|E(G)|=\left|E\left(G^{\prime}\right)\right|$ and $\left(n_{t}\left(G^{\prime}\right), n_{t-1}\left(G^{\prime}\right), \ldots, n_{2}\left(G^{\prime}\right), n_{1}\left(G^{\prime}\right)\right)$ precedes $\left(n_{t}(G), n_{t-1}(G), \ldots, n_{2}(G), n_{1}(G)\right)$ with respect to the lexicographic order, where $t=\max \left\{\Delta(G), \Delta\left(G^{\prime}\right)\right\}$.
A graph is minimal for a property when no smaller graph satisfies it.
We prove the Theorem 1.3 by contradiction. Let G be a minimal counterexample to Theorem 1.3, that is, the graph G does not admit a tnsd- k-coloring, while any other planar graph smaller than G admits a tnsd- k-coloring. In Section 3 , we will frequently conduct some operations on G, such as deleting or contracting edges, to obtain a planar graph H smaller than G. Therefore, H admits a tnsd- k-coloring ϕ^{\prime} by the minimality of G. If we can extend ϕ^{\prime} to a tnsd- k-coloring ϕ for G, then by contradiction we will get some structural properties which are forbidden in G. Finally we apply the discharging method to obtain a contradiction to the planarity of graph G.

When we color an element $x \in V(G) \cup E(G)(V(H) \cup E(H))$, the colors of edges and vertices in H adjacent to or incident with x are forbidden for x. If we remove the forbidden colors from the color set, then the remaining colors are available colors for x. The principal tools used in this paper are originated from those in [1].

https://daneshyari.com/en/article/5775508

Download Persian Version:
https://daneshyari.com/article/5775508

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yangdonglei_sdu@163.com (D. Yang), fiona_sl@163.com (L. Sun), xwyu2013@163.com (X. Yu), jlwu@sdu.edu.cn (J. Wu), zhous@jsnu.edu.cn (S. Zhou).

