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In this paper, a predator-prey model for exploited fish populations is considered, where 

the prey and the predator both show schooling behavior. Due to this coordinated behavior, 

predator-prey interaction occurs only at the outer edge of the schools formed by the pop- 

ulations. Positivity and boundedness of the model are discussed. Analysis of the equilibria 

is presented. A criterion for Hopf bifurcation is obtained. The optimal harvest policy is also 

discussed using Pontryagin’s maximum principle, where the effort is used as the control 

parameter. Numerical simulations are carried out to validate our analytical findings. Impli- 

cations of our analytical and numerical findings are discussed critically. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

It is a fact that many fish species live in groups. They enjoy many benefits from living in groups, such as higher success 

in finding mates, reduction in the risk of predation, increase in the foraging success, protection from bad weather, etc. 

Such collective behaviors are of two types, one is shoaling and the other is schooling . When members of a group swim 

independently in such a way that they stay connected, then this behavior is known as shoaling . If all members are swim 

in the same direction in a coordinated fashion with same speed then such a behavior is called schooling . Schooling fishes 

are usually of the same species and of the same size. Again shoalers and schoolers are of two types. Obligate shoalers or 

schoolers exhibit shoaling or schooling behavior all the time. Facultative shoalers or schoolers show collective behavior for 

finding mates or some other reasons [25] . Schools that are traveling can form thin lines, or squares or ovals or amoeboid 

shapes. 

Usually interactions of different species take several forms, depending on whether the influences are beneficial or detri- 

mental to the species involved. Among these interactions, predator-prey relationship is considered to be an extremely impor- 

tant one. It is true that the preys always try to develop the methods of evasion to avoid being eaten. However, it is certainly 

not true that a predator-prey relationship is always harmful for the preys, it might be beneficial to both. Further, such a 

relationship often plays an important role to keep ecological balance in nature. Mathematical modeling of predator-prey 

interaction was started in the 1920s. Interestingly, the first predator-prey model in the history of theoretical ecology was 

developed independently by Lotka (a US physical chemist) and Volterra (an Italian mathematician) [17,29] . Subsequently, 
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this model has been used as a machine to introduce numerous mathematical and practical concepts in theoretical ecology. 

Many refinements of the Lotka–Volterra model have also been made to overcome the shortcomings of the model and to 

get better insights of predator-prey interactions. We notice an important assumption in such modeling. In these models, it 

is assumed that the individuals of both predator and prey populations live independently so that any predator can interact 

with any prey. Consequently, the interaction term is proportional to the product of the density of both populations. This 

concept is used for many decades by many authors. 

Many fish species, which are in predator-prey relationship, have economic importance also. Therefore, developing their 

management strategies is an important area of research. The literature abounds with evidences of many such predator-prey 

systems. For example, Arctic cod ( Gadus morhua ) and its commercially important prey species: capelin ( Mallotus villosus ) 

or herring ( Clupea harengus ) [14] . Another example is tuna ( Thunnus spp. ), which feeds mainly on anchovy (e.g. Engraulis 

mordax ) and sardine (e.g. Sardinops sagax ) [5,22] . 

Most of the above mentioned fishes (both prey and predator) exhibit schooling behavior. For example, adult cods are 

usually found in dense schools [6] . Schooling behavior of juvenile tuna is well known [24] . On the other hand, small fishes 

like capelin, herring and sardine are among very spectacular schooling fishes [8,13,23] . Hence consideration of schooling 

behavior in predator-prey systems of fishes is of utmost importance. Although a number of predator-prey models for fish 

populations have been cultured in theoretical ecology (see [10,11,18,27] and references there in), but the effect of schooling 

behavior has remained unuttered. However, there should be no denying that, in case of many fish populations, ignoring 

schooling behavior is simply ignoring reality. 

From the above viewpoint, we consider a predator-prey model for fish populations, where both prey and predator live 

in schools. A number of interesting results on stability are established. Some results on extinction of the populations are 

obtained. A criterion for Hopf bifurcation is established. Optimal harvest policy (to be adopted by the fishery management) 

is discussed and dynamic optimization of the harvest policy is carried out using Pontryagin’s Maximum Principle. 

The paper is structured as follows. In Section 2 , we present the mathematical model with basic considerations. Positivity 

and boundedness of solutions of the model are established in Section 3 . Section 4 contains the detailed analysis of the 

equilibria, their stability analysis and a criterion for Hopf bifurcation. Bionomic equilibrium points, optimal harvest policy 

at equilibrium level, and dynamic optimization of the optimal harvest policy are presented in Section 5 . To illustrate our 

analytical findings, computer simulations of variety of solutions of the system are performed; and the results are presented 

in Section 6 . Section 7 contains the general discussion of the paper and biological significance of our analytical findings. 

2. The mathematical model 

At time t , let x ( t ) denotes the density of the prey fish, and y ( t ) denotes the density of the predator fish. In the following, 

we explain the basic considerations that motivate us to introduce our basic mathematical model. 

(i) So far as the growth of the prey (in the absence of the predator) is concerned, many modelers have suggested the 

logistic growth function to be a logically reliable choice. The function is introduced in 1838 by the Belgian mathematician 

Verhulst [28] . The logistic growth equation is given by 

dx 

dt 
= rx 

(
1 − x 

k 

)
, (2.1) 

where r is the intrinsic per capita growth rate and k is the carrying capacity of the environment. The logic behind this is 

very simple. As the resources (e.g., space, food, essential nutrients) are limited, every population grows into a saturated 

phase from which it cannot grow further; the ecological habitat of the population can carry just so much of it and no 

more. This indicates that the per capita growth rate is a decreasing function of the size of the population, and reaches 

zero as the population achieves a size k (in the saturated phase). Further, any population reaching a size that is above 

this value will experience a negative growth rate. The term −rx 2 /k may also be regarded as the loss due to intraspecific 

competition. 

(ii) Usually, it is assumed that the individuals of both predator and prey populations live independently so that any predator 

can interact with any prey. Consequently, the interaction term is proportional to the product of the density of both 

populations. This concept is used for many decades by many authors. If predators form a school and they attack a 

prey population which lives independently; then the predators who occupy the edge of the school would get maximum 

benefit. The idea of such community behaviors of predators had been given by Cosner et al. [12] . According to this idea, 

the interaction term should be proportional to the product of density of prey and the square root of the predator density. 

Similarly, when preys form a school and predators live independently, then the most harmed preys during predator 

hunting are those staying on the boundary of the school; and so the interaction term should be modified in an analogous 

manner. Unfortunately, such an innovative idea has not been used by the researchers for about a decade. The work of 

Chattopadhyay et al. [9] may be regarded as a strong recognition of this concept. Then came the works of Ajraldi et al. 

[1] and Braza [7] , which have given such modeling a new dimension. Their works have stimulated developments in the 

modeling of group behaviors among various populations. The idea is very interesting. Let P be the density of a population 

that gathers in groups, and suppose that group occupies an area A . The number of individuals staying at outermost 

positions in the group is proportional to the length of the perimeter of the patch where the group is located. Clearly, 

its length is proportional to 
√ 

A . Since P is distributed over a two-dimensional domain, 
√ 

P would therefore count the 
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