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a b s t r a c t 

In this paper, we present the data-driven COS method, ddCOS. It is a Fourier-based finan- 

cial option valuation method which assumes the availability of asset data samples: a char- 

acteristic function of the underlying asset probability density function is not required. As 

such, the presented technique represents a generalization of the well-known COS method 

[1]. The convergence of the proposed method is O(1 / 
√ 

n ) , in line with Monte Carlo meth- 

ods for pricing financial derivatives. The ddCOS method is then particularly interesting for 

density recovery and also for the efficient computation of the option’s sensitivities Delta 

and Gamma. These are often used in risk management, and can be obtained at a higher 

accuracy with ddCOS than with plain Monte Carlo methods. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In quantitative finance, statistical distributions are commonly used for the valuation of financial derivatives and within 

risk management. The underlying assets are often modelled by means of stochastic differential equations (SDEs). Except for 

the classical and most simple asset models, the corresponding probability density function (PDF) and cumulative distribution 

function (CDF) are typically not known and need to be approximated. 

In order to compute option prices, and to approximate statistical distributions, Fourier-based methods are commonly 

used numerical techniques. They are based on the connection between the PDF and the characteristic function (ChF), which 

is the Fourier transform of the probability density. The ChF is often available, and sometimes even in closed form, for the 

broad class of regular diffusions and also for Lévy processes. Some representative efficient Fourier pricing methods include 

those by Carr and Madan [2] , Boyarchenko and Levendorskii [3] , Lewis [4] and Fang and Oosterlee [1] . Here, we focus on 

the COS method from [1] , which is based on an approximation of the PDF by means of a cosine series expansion. 

Still, however, the asset dynamics for which the ChF are known is not exhaustive, and for many relevant asset price pro- 

cesses we do not have such information to recover the density. In recent years several successful attempts have been made 

to employ Fourier pricing methods without the explicit knowledge of the ChF. In Grzelak and Oosterlee [5] , for example, a 

hybrid model with stochastic volatility and stochastic interest rate was linearized by means of expectation operators to cast 

the approximate system of SDEs in the framework of affine diffusions. Ruijter and Oosterlee [6] discretized the governing 

asset SDEs first and then worked with the ChF of the discrete asset process, within the framework of the COS method. 

Borovykh et al. [7] used the Taylor expansion to derive a ChF for which they could even price Bermudan options highly 
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efficiently. In this work, we extend the applicability of the COS method to the situation where only data (samples from an 

unknown distribution) are available. 

The density estimation problem, using a data-driven PDF, has been intensively studied in the last decades, particularly 

since it is a component in the machine learning framework [8] . Basically, density estimators can be classified into parametric 

and non-parametric estimators. The first type relies on the fact that prior knowledge is available (like moments) to deter- 

mine the relevant parameters, while for non-parametric estimators the parameters need to be determined solely from the 

samples themselves. Within this second type of estimators we can find histograms, kernel density and orthogonal series 

estimators. A thorough description of these estimators is provided in [9] . More recently, some applications in finance have 

also appeared, see [10–12] , for example. 

For the valuation of financial derivatives, we will combine density estimators with Fourier-based methods, so orthog- 

onal series form a natural basis. We will focus on the framework of statistical learning , see [13] . In statistical learning, a 

regularization is employed to derive an expression for the data-driven empirical PDF. By representing the unknown PDF 

as a cosine series expansion, a closed-form solution of the regularization problem is known [13] , which forms the basis 

of the data-driven COS method (ddCOS). However, in order to employ the COS method machinery, underlying risk-neutral 

asset samples are required, i.e. they need to be generated according to some underlying model. This fact implies that the 

technique presented here results in a hybrid Monte Carlo-Fourier method. 

The use of the COS method gives us expressions for option prices and, in particular, for the option sensitivities or Greeks . 

These option Greeks are the derivatives of option price with respect to a variable or parameter. The efficient computation of 

the Greeks is a challenging problem when only asset samples are available. Existing approaches are based on Monte Carlo- 

based techniques, like on finite-differences (bump and revalue), pathwise or likelihood ratio techniques, for which details 

can be found in [14] , chapter 7. Several extensions and improvements of these approaches have appeared, for example, based 

on adjoint formulations [15] , the ChF [16,17] , Malliavin calculus [18,19] , algorithmic differentiation [20,21] or combinations 

of these [22–24] . Intuitively, the ddCOS method follows a similar approach as the likelihood ratio method, i.e. it relies on 

the differentiation of the (recovered) density function. On the other hand, our method can be also related to the improved 

methodologies employing the so-called Malliavin derivative , since it introduces a sample-based weighted coefficients that 

multiply the payoff coefficients. For both techniques, the differentiation of the payoff function (or payoff coefficients) is 

avoided. 

All in all, the computation of the Greeks can be quite involved. The ddCOS method is not directly superior to Monte 

Carlo methods for option valuation, but it is competitive for the computation of the corresponding sensitivities. We derive 

simple expressions for the Greeks Delta and Gamma. The importance of Delta and Gamma in dynamic hedging and risk 

management is well-known. A useful application is found in the Delta–Gamma approach [25] to quantify market risk. The 

approximation of risk measures like Value-at-Risk (VaR) and Expected Shortfall (ES) under the Delta–Gamma approach is 

still nontrivial. Next to Monte Carlo methods, Fourier techniques have been employed in this context, when the ChF of the 

change in the value of the option portfolio is known (see [26,27] ). For example, the COS method has been applied in [28] to 

efficiently compute the VaR and ES under the Delta–Gamma approach. The ddCOS method may generalize the applicability 

to the case where only data is available. 

This paper is organized as follows. The ddCOS method, and the origins in statistical learning and Fourier-based option 

pricing, are presented in Section 2 . Variance reduction techniques can also be used within the ddCOS method, providing 

an additional convergence improvement. We provide insight and determine values for the method’s open parameters in 

Section 3 . Numerical experiments, with a focus on the option Greeks, are presented in Section 4 . We conclude in Section 5 . 

2. The data-driven COS method 

In this section we will discuss the ddCOS method, in which aspects of the Monte Carlo method, density estimators and 

the COS method are combined to approximate, in particular, the option Greeks Delta and Gamma. We will focus on European 

options here. 

The COS method in [1] is a Fourier-based method by which option prices and sensitivities can be computed for various 

options under different models. The method relies heavily on the availability of the ChF, i.e., the Fourier transform of the 

PDF. In the present work, we assume that only asset samples are available, not the ChF, resulting in the data-driven COS 

method. It is based on regularization in the context of the statistical learning theory, presented briefly in Section 2.2 . The 

connection with the COS method is found in the fact that the data-driven PDF appears as a cosine series expansion. 

2.1. The COS method 

The starting point for the well-known COS method is the risk-neutral option valuation formula, where the value of a 

European option at time t , v (x, t) , is an expectation under the risk neutral pricing measure, i.e., 

v (x, t) = e −r(T −t) 
E [ v (y, T ) | x ] = e −r(T −t) 

∫ 
R 

v (y, T ) f (y | x )d y, (1) 
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