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ARTICLE INFO ABSTRACT
MSC: In the present article, we consider the Kantorovich type generalized Szasz-Mirakyan op-
41A25

erators based on Jain and Pethe operators [32]. We study local approximation results in

41A36 terms of classical modulus of continuity as well as Ditzian-Totik moduli of smoothness.
Keywords: Further we establish the rate of convergence in class of absolutely continuous functions
Stancu operators having a derivative coinciding a.e. with a function of bounded variation.
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1. Introduction

In 1977, Jain and Pethe [32] generalized the well-known Szasz-Mirakyan operators [40] as:
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for some finite constants K, A> 0. Here o = (&) ¢y is such that
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The operators S,[f’] have also been considered by Stancu [39], Mastroianni [36], Della Vecchia and Kocic [17] and Finta [26,27].
Abel and Ivan [1] gave the following alternate form of operators (1.1) (by putting ¢ = % :

Suc(fix) =Y (%Lc)ncx (”C" +kk - 1) a+ c)"‘f<z>, x>0, (12)
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where c=c; > f(n=0,1,2, ...... ) for certain constant § > 0. Also, for a particular case o = % the operators (1.1) reduce to
another form, which was considered by Agratini [2] as follows:
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where

mx), =nx(nx+1)...(nx+k-1), k=1,

and (nx)y = 1. These operators (1.3) are special cases of Lupas operators [35]. The operators (1.3) have also been studied in
[25] and [37].
Agratini [3] modified the operators (1.3) into integral form in Kantorovich sense as:

T.(f:x)=n Zz e (M), / o o, (14)
k=0 k/n

2k

and studied some approximation properties. Very recently, Deo et al. considered generalized positive linear operators based
on Pélya-Eggenberger and inverse Pélya-Eggenberger distribution in [21] and furthermore, they gave Kantorovich variant of
these generalized operators in [18]. Several researchers have given some interesting results on Kantorovich variant of various
operators (see [7-16,30,38]). Motivated by above works, for any bounded and integrable function f defined on [0, co), we
also modify the operators (1.1) in Kantorovich form:
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Special cases:

(1) For @ =0 in (1.5), we get Szdsz-Kantorovich operators given by Totik in [41].
(2) For a = % in (1.5), we obtain another Kantorovich operators considered by Agratini [3].

The focus of this paper is to study the approximation properties of modified Kantorovich operators (1.5). First we ob-
tain local approximation formula via modulus of continuity of second order then we use Ditzian-Totik moduli of smooth-
ness to discuss the rate of convergence of our operators. Finally, we establish the rate of convergence for functions hav-
ing derivatives of bounded variation. The properties discussed in this article can be found in some recent papers like
[4,6,19,20,24,28,29,31,33].

2. Auxiliary results

In order to prove the main convergence properties of operators (1.5), we need the following basic results:
Lemma 2.1 [39]. For the generalized Szdsz-Mirakyan operators (1.1) hold
sty =1, S¥x) =x,
and
1
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Proposition 2.1. For the operators (1.1), there hold the following higher order moments:
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Proof. By definition we can write
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