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a b s t r a c t 

Numerical schemes for the nonlinear equilibrium dispersive (ED) model for chromato- 

graphic processes with adsorption isotherms of Langmuir type are proposed. This model 

consists of a system of nonlinear, convection-dominated partial differential equations. The 

nonlinear convection gives rise to sharp moving transitions between concentrations of dif- 

ferent solute components. This property calls for numerical methods with shock captur- 

ing capabilities. Based on results by Donat, Guerrero and Mulet (Appl. Numer. Math. 123 

(2018) 22–42), conservative shock capturing numerical schemes can be designed for this 

chromatography model. Since explicit schemes for diffusion problems can pose severe sta- 

bility restrictions on the time step, the novel schemes treat diffusion implicitly and convec- 

tion explicitly. To avoid the need to solve the nonlinear systems appearing in the implicit 

treatment of the nonlinear diffusion, second-order linearly implicit-explicit Runge–Kutta 

schemes (LIMEX-RK schemes) are employed. Numerical experiments demonstrate that the 

schemes produce accurate numerical solutions with the same stability restrictions as in 

the purely hyperbolic case. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

1.1. Scope 

Chromatography is used to separate complex fluid mixtures when a high purity of the product is demanded. In liquid 

batch chromatography, a pulse of fluid mixture, the solute, is injected at one end of a long cylindrical column filled with 

a porous medium (the stationary phase), followed by a continuous flow of liquid, the mobile phase, along the column. The 

solute interacts with the porous medium and its components begin to separate according to the strength of their affinity 

with the stationary phase. If the column is long enough, band profiles of single components move through it, so making it 

possible to collect pure fractions of components at its end. 

The equilibrium dispersive (ED) model [14,19,25] is applicable when the mass transfer kinetics between the mobile phase 

and the stationary phase is fast, and when all band-broadening effects can be lumped into an apparent dispersion coeffi- 

cient D a . Within the ED model, chromatographic processes can be modeled by first-order nonlinear convection-dominated 
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conservation laws [14,22,23] , coupled with some algebraic relations between the concentrations of the components of the 

mixture in the mobile and solid phases. Since analytical solutions can seldom be obtained, it is crucial to design numeri- 

cal schemes for performing simulations with these models, and thereby to help practitioners to reduce the need for costly 

empirical experimentation. 

There are other approaches that take into account the kinetics between the mobile phase and the stationary phase 

assuming that the equilibrium is not instantaneous, obtaining systems of equations with relaxation terms [15,16] (see also 

[14] for a more physical description). Both models (ED and relaxation) are similar when this relaxation parameter tends to 

zero. 

Nonlinear convection terms cause sharp moving transitions between concentrations of different solute components and 

numerical methods should be able to cope with this situation, i.e., be conservative. Several works of simulation in chro- 

matography propose conservative numerical schemes in which if D a is null, then the roles of time t and of position z can be 

interchanged, being then the amounts conserved given by concentration in the mobile phase, and the flux given by the total 

solute concentrations (see [14,24] ). These schemes are efficient and even used to solve certain problems of identification 

of parameters in chromatography [18] since they do not require the inversion of the nonlinear function that algebraically 

connects these two concentration vectors (total concentration and mobile phase concentration). The problem with these 

schemes is that, on the one hand, they do not conserve the original quantities, i.e., the total concentrations, and on the 

other hand, they cannot be applied if D a > 0. In this sense it is proposed in [19] to suitably rewrite the model including the 

diffusion term and to solve it numerically by a non-conservative, linearized scheme in order to obtain an efficient method. 

However, Donat et al. [9] show that the non-conservative scheme proposed by Javeed et al. [19] for the simulation of the ED 

model can yield simulations for which the chromatographic fronts, that correspond to shocks when diffusion is neglected, 

move at a wrong speed and individual solute concentrations are not conserved when they should. 

The main difficulty in the design of conservative numerical schemes in this formulation is that the conversion from con- 

served variables to primitive variables (concentrations of solute and mobile phases) can only be achieved through an implicit 

function whose properties can be deduced from the mathematical structure of the adsorption isotherm. Nevertheless this 

implicit function can be approximated numerically by efficient root finders. 

The particular structure of the ED model [9] , summarized in the next section, provides the theoretical background to 

implement conservative spatial semi-discretizations of the ED model (1.2) , in a method of lines strategy. It is the purpose of 

this paper to advance fully discrete conservative numerical schemes that are obtained by applying suitable time integrators 

to the spatial semi-discretization. Explicit schemes applied to diffusion problems can strongly restrict the time step due 

to stability constraints. Therefore we aim to treat diffusion implicitly and convection explicitly. To avoid the necessity to 

solve nonlinear systems appearing in the implicit treatment of the nonlinear diffusion [6] , we propose second-order linearly 

implicit-explicit Runge–Kutta schemes (in short, “LIMEX-RK” schemes) recently introduced in [1] . The same approach for the 

same purpose was proposed to handle similar problems in [3,4] . 

1.2. The equilibrium dispersive (ED) model of chromatography 

We denote time by t and let z be the axial coordinate along the column that is normalized to have unit height, so that 

the top is at z = 0 and the bottom at z = 1 . We assume that ε is the constant total porosity of the solid phase, i.e., the 

proportion of void space that can be occupied by fluid and u is the (constant) velocity of the mobile phase. 

We denote by c i the concentrations of the i th liquid phase and by q i the concentration of solid phase adsorbent perme- 

ated by the i th phase. Thus, the total amount of liquid/solid material occupied by the i th phase is εc i + (1 − ε) q i . The flux 

for the i th phase is postulated as ε(uc i − D a ∂ c i /∂ z) , so that the continuity equations of the ED model can be written as 

∂ 

∂t 

(
εc i + (1 − ε) q i 

)
+ 

∂ 

∂z 

(
ε 
(

uc i − D a 
∂ c i 
∂z 

))
= 0 , i = 1 , . . . , N. (1.1) 

We assume that the mobile phase corresponds to the last index N . With the notation c := (c 1 , . . . , c N ) 
T and q := (q 1 , . . . , q N ) 

T 

and dividing (1.1) by ε, we obtain the system of continuity equations in the form 

∂ 

∂t 

(
c + 

1 − ε 

ε 
q 

)
+ u 

∂c 

∂z 
= D a 

∂ 2 c 

∂z 2 
. (1.2) 

Appropriate boundary conditions for this model are proposed in [14] , namely 

u c − D a 
∂c 

∂z 

∣∣∣∣
z=0 

= u c inj (t) , 
∂c 

∂z 

∣∣∣∣
z=1 

= 0 , (1.3) 

for a known function c inj ( t ) that models the continuous injection of the liquid phases (components 1 to N − 1 ) and the 

“displacer” (component N ) through the top of the column. 

Within the ED model, the equilibrium relationship between the solid phase and liquid phase concentrations is given by 

the adsorption isotherm q = q (c) , which is usually a nonlinear function [14] . In this paper we consider multi-component 

mixtures for which the adsorption isotherms are of Langmuir type, that is 

q i = 

αi c i 

1 + βT c 
, i = 1 , . . . , N, (1.4) 



Download English Version:

https://daneshyari.com/en/article/5775531

Download Persian Version:

https://daneshyari.com/article/5775531

Daneshyari.com

https://daneshyari.com/en/article/5775531
https://daneshyari.com/article/5775531
https://daneshyari.com

