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a b s t r a c t 

The theory and algorithms for recovering a sparse representation of multiple measurement 

vector (MMV) are studied in compressed sensing community. The sparse representation 

of MMV aims to find the K -row sparse matrix X such that Y = AX, where A is a known 

measurement matrix. In this paper, we show that, if the restricted isometry property (RIP) 

constant δK+1 of the measurement matrix A satisfies δK+1 < 

1 √ 
K +1 

, then all K -row sparse 

matrices can be recovered exactly via the Orthogonal Matching Pursuit (OMP) algorithm 

in K iterations based on Y = AX . Moreover, a matrix with RIP constant δK+1 = 

1 √ 
K +0 . 086 

is 

constructed such that the OMP algorithm fails to recover some K -row sparse matrix X in 

K iterations. Similar results also hold for K -sparse signals recovery. In addition, our main 

result further improves the proposed bound δK+1 = 

1 √ 
K 

by Mo and Shen [12] which can 

not guarantee OMP to exactly recover some K -sparse signals. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Compressed sensing has been a very active field of recent research with a wide range of applications, including signal 

processing [1] , medical imaging [2] , radar system [3] , and image compression [4] . A central goal is to develop fast algorithms 

that can recover sparse signals from a relatively small number of linear measurements. The single measurement vector (SMV) 

formulation is now standard in sparse approximation and compressed sensing literature. For a signal x ∈ R n , define ‖ x ‖ 0 to 

be the number of nonzero elements of x and the support of x as supp (x ) = { i : x i � = 0 } where x i denotes the i th entry of x . 

Now we want to recover the original signal x from a linear measurement y = Ax, where A is a known m × n matrix( m � n ). 

Then we need to solve the problem 

min ‖ x ‖ 0 s . t . Ax = y, (1.1) 

where A and y are known. 

A natural extension of the problem (1.1) is the joint sparse recovery problem, also known as the multiple measurement 

vector (MMV) problem. It aims to identify a common support shared by unknown sparse vectors x 1 , ..., x n from the multiple 

vectors y k = Ax k , for k = 1 , .., n, and obtained through a common sensing matrix A . The MMV problem is considered in [5–7] , 
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where the objective is to minimize the number of rows containing nonzero entries. For the matrix X = (X 1 , X 2 , ..., X l ) ∈ R n ×l , 

the row support set of X is 

supp (X ) = 

l ⋃ 

i =1 

supp (X i ) , 

where X i represents the i th column of matrix X . Given a multiple-measurement vector Y ∈ R m × l and a measurement matrix 

A ∈ R m × n , where the columns of A have been normalized, the MMV problem can be formulated as 

min | supp (X ) | s . t . AX = Y, (1.2) 

where | supp ( X )| is defined as the number of nonzero rows of the matrix X . The matrix X is called K-row sparse if | supp ( X )| ≤ K . 

A sparse representation means that matrix X (or a vector, if one has an SMV with l = 1 ) has a small number of rows that 

contain nonzero entries. The Orthogonal Matching Pursuit (OMP) algorithm can find the sparsest solution X of problem 

(1.2) when some conditions are satisfied. In this paper, � is used to denote the row support set of the sparsest solution X 

of problem (1.2) . 

The following recovery guarantees are based on the restricted isometry property (RIP) introduced by Candés and Tao [8] . 

The standard K -order RIP constant of A is the smallest nonnegative real number δK such that 

(1 − δK ) ‖ x ‖ 

2 
2 ≤ ‖ Ax ‖ 

2 
2 ≤ (1 + δK ) ‖ x ‖ 

2 
2 

for all K sparse vector x (i. e., | supp ( x )| ≤ K ). 

In the last few years, numerous algorithms have been proposed and studied for solving the SMV problem. Another way 

to obtain a sparse representation is through a greedy algorithm, e.g., OMP [5,6] . It has been proved by Donoho et al. [1] and 

Tropp [9] independently that under certain conditions, the OMP can find the sparsest representation of the signal. Con- 

sidering the conditions in terms of RIP constant for OMP to exactly recover any K -sparse signal in K iterations, Daven- 

port and Wakin [10] have proven that δK+1 < 

1 

3 
√ 

K 
is sufficient. Liu and Temlyakov [11] have improved the condition to 

δK+1 < 

1 

( 
√ 

2 +1) 
√ 

K 
. Later, Mo and Shen [12] have shown that δK+1 < 

1 √ 

K +1 
is near-optimal, and also constructed a matrix with 

RIP constant δK+1 = 

1 √ 

K 
such that the OMP can not recover some K -sparse signal x in K iterations. Recently, Zhao et al. 

[13] further show that δK+1 < 

1 √ 

K +1 / 13 
still does not guarantee that some K sparse signals be recovered exactly. However, 

Ding et al. [14] have shown that the condition δK+1 < 

1 

2 
√ 

K +1 
is sufficient for the exact recovery of a K -row sparse matrix X 

via the OMP algorithm to solve the MMV problem in the noiseless case. 

In this paper, we propose an improved condition to guarantee the exact recovery of the OMP algorithm for MMV problem. 

Our main conclusion states that if the RIP constant of the sensing matrix A satisfies δK+1 < 

1 √ 

K +1 
, then the OMP algorithm 

can exactly recover any K -row sparse matrix from the measurements Y = AX . Moreover, we also construct a matrix with RIP 

constant δK+1 = 

1 √ 

K +0 . 086 
such that the OMP algorithm fails to recover some K -row sparse matrix. Similar results also hold 

for K -sparse signals recovery. 

The rest of the paper is organized as follows. In Section 2 , we shall introduce some notations. In Section 3 , we shall give 

a simple observation of the OMP algorithm to solve the problem (1.2) , and a sufficient condition for the OMP algorithm to 

exactly recover any K -row sparse matrix is established. we provide an example to show that there exists a matrix with RIP 

constant δK+1 = 

1 √ 

K +0 . 086 
for which OMP algorithm fails to recover the K -sparse signal. Similar results also hold for K -sparse 

signals recovery. Finally, Section 4 concludes the paper and gives some discussion on related work. 

2. Notations 

In this section, we introduce some basic notations that will be used throughout the paper. 

For matrices X and Y in R m × n , we define the inner product by 〈 X, Y 〉 = tr (X T Y ) = 

∑ m 

i =1 

∑ n 
j=1 X i j Y i j , where X 

T denotes the 

transpose of X . The norm induced by this inner product is the Frobenius (or Hilbert–Schmidt) norm ‖ · ‖ F , and ‖ X ‖ ∞ 

is the 

maximum absolute row sum of the matrix X . We use X ( i ) to denote the i th row of X . 

Let �⊂ {1, 2, ..., n } and �c = { 1 , 2 , ..., n }\ � be index sets. For A ∈ R m × n , A � is m × | �| matrix obtained by selecting 

the columns of A indexed by �. We define the range space of A by R (A ) = { y : y = Ax, f or x ∈ R n } . Let A † be the Moore–

Penrose pseudoinverse of A . If A is a full column rank matrix, then A 

† = (A 

T A ) −1 A 

T . Let P A = AA 

† be the orthogonal projection 

operator onto R (A ) , then (I − P A ) is the orthogonal projection operator onto the orthogonal complement of R (A ) . 

3. Main results 

In this section we present a detailed description of the Orthogonal Matching Pursuit (OMP) algorithm. We assume that 

the columns of A are normalized, i.e., ‖ A i ‖ 2 = 1 for i = 1 , 2 , . . . , n . The OMP algorithm to solve problem (1.2) in [5,14] can be 

stated as follows. 
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