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a b s t r a c t 

A bipartite digraph is said to be a half vertex transitive digraph if its automorphism acts 

transitively on the sets of its bipartition, respectively. In this paper, bipartite double coset 

digraphs of groups are defined and it is shown that any half vertex transitive digraph is 

isomorphic to some half double coset digraph, and we show that the connectivity of any 

strongly connected half transitive digraph is its minimum degree. 
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1. Introduction 

A graph (digraph) is said to be vertex transitive if its automorphism group acts transitively on its vertex set, and is edge 

(arc) transitive if its automorphism group acts transitively on its edge (arc) set. There is close relation between the graph 

symmetry and its connectivity. For instance, the edge connectivity of a connected vertex transitive graph is its regular degree 

[4] and the connectivity of a connected edge transitive graph is its minimum degree [7] . Similar results also hold for some 

digraphs [1,2] . These motivate us to study the connectivity properties of graphs (digraphs) with k vertex or edge orbits 

under the action of their automorphism groups. The first step under this direction is to study the connectivity properties of 

graphs (digraphs) with two orbits. 

Let D = (V, E) be a digraph, and F ⊆V . Set 

N 

+ (F ) = { v ∈ V \ F : there exists u ∈ F satisfying (u, v ) ∈ E } , 
N 

−(F ) = { v ∈ V \ F : there exists u ∈ F satisfying (v , u ) ∈ E } . 
Set d + 

D 
(u ) = | N 

+ (u ) | , and d −
D 
(u ) = | N 

−(u ) | , which are called out-degree and in-degree of u , respectively. Set δ+ (D ) = 

min { d + 
D 
(u ) : u ∈ V (D ) } , δ−(D ) = min { d −

D 
(u ) : u ∈ V (D ) } , and δ(D ) = min { δ−(D ) , δ+ (D ) } , which are called the minimum out- 

degree , the minimum in-degree and the minimum degree of D , respectively. The arc connectivity λ( D ) is the minimum cardi- 

nality of all arc sets S in D such that D − S is not strongly connected, and the vertex connectivity κ( D ), simply connectivity , 

is the minimum cardinality of all vertex sets T in D such that D − T is not strongly connected. The following result is well 

known: 

κ(D ) ≤ λ(D ) ≤ δ(D ) . 

Thus, if κ(D ) = δ(D ) , then λ(D ) = δ(D ) . D is said to be strongly connected if κ( D ) ≥ 1. 

For results on the connectivity of vertex transitive or arc transitive digraphs, see the excellent survey [7] and papers 

[3,5,6] . Notation and definitions not defined here are referred to [8,9] . 
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2. Half vertex transitive digraphs and half double coset digraphs 

Let G be a group and S ⊆G �{1}, where 1 is the identity element of G . The Cayley digraph D = D (G, S) = (V (D ) , E(D )) is 

a directed graph with vertex set V (D ) = G and arc set E(D ) = { (x, y ) : there exists s ∈ S satisfying yx −1 = s for x , y ∈ G }. If S 

is inverse-closed, that is, S = S −1 , then ( x , y ) ∈ E ( D ) if and only if ( y , x ) ∈ E ( D ). Thus, D corresponds to an undirected graph 

C ( G , S ), called a Cayley graph . For a ∈ G , the right multiplication R ( a ): g → ga , g ∈ G , is clearly an automorphism of any Cayley 

digraph of G . Automorphism group Aut ( D ) of D is the set of all automorphism of the digraph D . Let R (G ) = { R (a ) : a ∈ G } . 
Then R ( G ) is a subgroup of Aut ( D ) and it acts transitively on the vertices of D . Thus Cayley digraphs (graphs) are vertex 

transitive. 

Definition 1. Let D = (U, W ; E) be a bipartite digraph with bipartition U ∪ W . If Aut ( D ) acts transitively on U and W , respec- 

tively, then we call D a half vertex transitive digraph. 

The undirected version of half vertex transitive digraph is due to [9] . Let G be a group, R be a subgroup of G , we use [ G : 

R ] to denote the set of all right cosets of R in G , that is [ G : R ] = { Rg : g ∈ G } . 
Definition 2. Let G be a group, L and R be two subgroups of G . Assume T i is a union of some double cosets of the form RgL 

for i = 1 , 2 . Define the half double coset digraph D = D (G, L, R ; T 1 , T 2 ) = (V (D ) , E(D )) as follows: 

(i) V (D ) = [ G : L ] ∪ [ G : R ] , 

(ii) ( Lg , Rg ′ ) ∈ E ( D ) if and only if Rg ′ = Rt 1 g for some t 1 ∈ T 1 , 

(iii) ( Rg , Lg ′ ) ∈ E ( D ) if and only if Rg = Rt 2 g 
′ for some t 2 ∈ T 2 . 

For half double coset digraphs, we have the following theorem. 

Theorem 2.1. Let D = D (G, L, R ; T 1 , T 2 ) be a half double coset digraph. Then 

(i) R ( G ) ≤ Aut ( D ), thus D is half vertex transitive, where R (G ) = { R (a ) : a ∈ G } , 
(ii) d + 

D 
(Lg) = | [ T 1 : R ] | , d −D (Lg) = | [ T 2 : R ] | , d + D 

(Rg) = | [ T −1 
2 

: L ] | and d −
D 
(Rg) = | [ T −1 

1 
: L ] | , where |[ T i : R ]| and | [ T −1 

i 
: L ] | denote 

the number of right cosets of R in T i and L in T −1 
i 

for i = 1 , 2 , respectively, 

(iii) D is strongly connected if and only if G = 〈 T −1 
2 

T 1 〉 . 
Proof. For any R ( a ) ∈ R ( G ) and ( Lg , Rg ′ ) ∈ E ( D ), there exists t 1 ∈ T 1 satisfying Rg ′ = Rt 1 g. Thus (Lg) R (a ) = Lga, (Rg ′ ) R (a ) = Rt 1 ga . 

By Definition 2 , (( Lg ) R ( a ) , ( Lg ′ ) R ( a ) ) ∈ E ( D ). (i) follows. To prove (ii), it suffices to note that N 

+ (L ) = { Rt 1 : t 1 ∈ T 1 } , N 

−(L ) = 

{ Rt 2 : t 2 ∈ T 2 } , N 

+ (R ) = { Lt −1 
2 

: t 2 ∈ T 2 } and N 

−(R ) = { Lt −1 
1 

: t 1 ∈ T 1 } . Clearly, D is strongly connected if and only if there exists 

a directed path from L to Lg for any g ∈ G , that is, there exists an integer k and t (1) 
i 

∈ T 1 and t (2) 
i 

∈ T 2 for i ∈ { 1 , 2 , . . . , k } 
satisfying 

L → Rt (1) 
1 

→ L 
(
t (2) 

1 

)−1 
t (1) 

1 
→ · · · → L 

(
t (2) 

k 

)−1 
t (1) 

k 
· · ·

(
t (2) 

1 

)−1 
t (1) 

1 
= Lg, 

the above equation holds if and only if g ∈ 〈 T −1 
2 

T 1 〉 . (iii) follows. �

Theorem 2.2. Let D = (U, W ; E) be a half vertex transitive digraph. Let G = Aut(D ) , L = G u and R = G w 

, where u ∈ U , w ∈ W, 

and G u and G w 

are the stabilizers of u and w in G , respectively. Set T 1 = { g ∈ G : w 

g ∈ N 

+ (u ) } and T 2 = { g ∈ G : w 

g ∈ N 

−(u ) } . 
Then D 

∼= 

D ( G , L , R ; T 1 , T 2 ) . 

Proof. We prove a sequences of claims from which the results follow. 

Claim 1. T 1 and T 2 are unions of some double cosets of the form RgL. 

In fact, for any g ∈ T 1 , w 

g ∈ N 

+ (u ) , that is, (u, w 

g ) ∈ E(D ) . Then for any l ∈ L , (u, w 

g ) l = (u, w 

gl ) ∈ E(D ) . Since for any r ∈ R , 

w 

r = w, thus (u, w 

rgl ) ∈ E(D ) . By definition, rgl ∈ T 1 , and therefore RgL ⊆T 1 . Similarly, if g ∈ T 2 , then RgL ⊆T 2 . 

Let D 1 = D (G, L, R ; T 1 , T 2 ) , U = { u 1 = u, u 2 , . . . , u m 

} , and W = { w 1 = w, w 2 , . . . , w n } . Since D is half vertex transitive, there 

exists g (1) 
i 

, g (2) 
j 

∈ G satisfying u g 
(1) 
i = u i and w 

g 
(2) 
j = w j for i ∈ { 1 , 2 , . . . , m } and j ∈ { 1 , 2 , . . . , n } . Define a map σ from V ( D ) to 

V ( D 1 ) as follows, 

σ : u i → Lg (1) 
i 

i = 1 , 2 , . . . , m, 

w j → Rg (2) 
j 

j = 1 , 2 , . . . , n. 

Claim 2. σ is bijective. 

For any Lg ∈ [ G : L ], suppose that u g = u i for i ∈ { 1 , 2 , . . . , m } , then u g = u g 
(1) 
i , that is u g 

(1) 
i 

g −1 = u . Thus g (1) 
i 

g −1 ∈ L and 

Lg = Lg (1) 
i 

= u σ
i 

. Similarly, for any Rg ∈ [ G : R ], if w 

g = w s for s ∈ { 1 , 2 , . . . , n } , then Rg = Rg (2) 
s = w 

σ
s . If u 

σ
i 

= u σ
j 

for 1 ≤ i < j ≤ m , 

then Lg (1) 
i 

= Lg (1) 
j 

, and so there exists l ∈ L satisfying g (1) 
j 

= lg (1) 
i 

. Thus u j = u 
g 
(1) 
j = u lg 

(1) 
i = u g 

(1) 
i = u i . Similarly, if w 

σ
s = w 

σ
t for 

1 ≤ s < t ≤ n , then w s = w t . 
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