
Applied Mathematics and Computation 316 (2018) 245–255

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Fast calculation of inverse square root with the use of magic

constant – analytical approach

Leonid V. Moroz

a , Cezary J. Walczyk

b , Andriy Hrynchyshyn

a , Vijay Holimath

c ,
Jan L. Cie ́sli ́nski b , ∗

a Department of Security Information and Technology, Lviv Polytechnic National University, st. Kn. Romana 1/3, Lviv 790 0 0, Ukraine
b Uniwersytet w Białymstoku, Wydział Fizyki, ul. Ciołkowskiego 1L, Białystok 15–245, Poland
c VividSparks IT Solutions, Hubli 580031, No. 38, BSK Layout, India

a r t i c l e i n f o

Keywords:

Floating-point arithmetic

Inverse square root

Magic constant

Newton–Raphson method

a b s t r a c t

We present a mathematical analysis of transformations used in fast calculation of inverse

square root for single-precision floating-point numbers. Optimal values of the so called

magic constants are derived in a systematic way, minimizing either relative or absolute er-

rors. We show that the value of the magic constant can depend on the number of Newton–

Raphson iterations. We present results for one and two iterations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In order to understand the behaviour of equations, functions or models, one has to simulate, compile or execute the

functions or equations. They may involve not only the basic operators such as: addition, subtraction and multiplication but

also the advanced operators such as division, square root, inverse square root and trigonometric functions. The response

time of a processor is a critical factor. The faster is the processing speed of the underlying hardware, the quicker one can

simulate or execute these models, equations or functions. In contrast to basic arithmetic operators the advanced operators

are relatively complicated to design, slower and take up more hardware [1,2] .

Floating-point inverse square root is widely used in several areas such as image and digital signal processing, communi-

cations and design of scientific engines [1–4] . Many algorithms can be used to approximate the inverse square root function

[1,3,5] . All of these algorithms require an initial seed to approximate function.

If the initial seed is accurate, then iteration required for this function is less time-consuming, i.e., the function

requires less cycles. In most of the cases, the initial seed is obtained from Look-Up Table (LUT) and the LUT con-

sume significant silicon area of a chip. In this paper we obtain the initial seed using the so called magic constant

[6–10] which does not require LUT. Then we approximate inverse square root function using the Newton–Raphson method

once and twice. In both cases we derive analytically the best value of the magic constant solving exactly (up to round-off

errors) the non-trivial problem of choosing the best starting values for Newton–Raphson iterations [11] .

We present the first mathematically rigorous description of the fast algorithm for computing inverse square root for

single-precision IEEE Standard 754 floating-point numbers (type float).

∗ Corresponding author.

E-mail addresses: moroz_lv@polynet.lviv.ua (L.V. Moroz), walcez@gmail.com (C.J. Walczyk), hrynchyshyn.a@gmail.com (A. Hrynchyshyn),

vijay.holimath@vivid-sparks.com (V. Holimath), j.cieslinski@uwb.edu.pl (J.L. Cie ́sli ́nski).

http://dx.doi.org/10.1016/j.amc.2017.08.025

0 096-30 03/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2017.08.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2017.08.025&domain=pdf
mailto:moroz_lv@polynet.lviv.ua
mailto:walcez@gmail.com
mailto:hrynchyshyn.a@gmail.com
mailto:vijay.holimath@vivid-sparks.com
mailto:j.cieslinski@uwb.edu.pl
http://dx.doi.org/10.1016/j.amc.2017.08.025

246 L.V. Moroz et al. / Applied Mathematics and Computation 316 (2018) 245–255

Fig. 1. The layout of a 32-bit floating-point number.

1. float InvSqrt(float x){

2. float halfnumber = 0.5f ∗ x;

3. int i =

∗(int ∗) &x;

4. i = R -(i � 1);

5. x =

∗(float ∗)&i;

6. x = x ∗(1.5f-halfnumber ∗x ∗x);

7. x = x ∗(1.5f-halfnumber ∗x ∗x);

8. return x;

9. }

This code, written in C , will be referred to as function InvSqrt . It realizes a fast algorithm for calculation of the inverse

square root. In line 3 bits of variable x (type float) are transferred to variable i (type int). In line 4 there is determined an

initial value (then subject to the iteration process) of the inverse square root, where R is a “magic constant”. In line 5 bits

of a variable i (type int) are transferred to the variable x (type float). Lines 6 and 7 contain subsequent iterations of the

Newton–Raphson algorithm.

The algorithm InvSqrt has numerous applications, in software [8,14,15] and hardware implementation [12,13,16] . The most

important among them is 3D computer graphics, where normalization of vectors is ubiquitous. InvSqrt is characterized by

a high speed, more than 3 times higher than in computing the inverse square root using library functions. This property is

discussed in detail in [17] . One has to remember taht the InvSqrt works well on Intel processors but on some other archi-

tectures it does not perform as well. For example, InvSqrt executed on the PowerPC processor has to include loading/storing

between floating-point registers and integer registers (load-hit-store penalties) and hardware provided alternatives can be

more effective [7] .

The errors of the fast inverse square root algorithm depend on the choice of R . The original value was R = 0x5F3759DF

[10,17] . Its motivation is not quite clear (certainly this is not the best choice), a possible explanation is given in [18] . Lomont

found the best values of the magic constant numerically, testing the errors for all the floating-point numbers [11] . In sev-

eral theoretical papers [11,17–20] (see also the Eberly’s monograph [7]) attempts were made to determine analytically the

optimal value (i.e. minimizing errors) of the magic constant. Lomont provided a quite detailed analysis showing how the

magic number was chosen [11] , Eberly showed that in fact there are many magic constants that are quite effective [19] .

In our paper we recover analytically the results of Lomont, presenting missing mathematical description of all steps of the

fast inverse square root algorithm. In particular, we explain why the optimal value of the magic constant depends on the

number of Newton–Raphson iterations.

2. Preliminaries

The value of a normal floating-point number can be represented as:

x = (−1) s x (1 + m x)2

e x , (2.1)

where s x is the sign bit (s x = 1 for negative numbers and s x = 0 for positive numbers), 1 + m x is the normalized mantissa

(or significand), where m x ∈ [0, 1) and, finally, e x is an integer.

In the case of the IEEE-754 standard, a floating-point number is encoded by 32 bits (Fig. 1). The first bit corresponds

to a sign, the next 8 bits correspond to an exponent e x and the last 23 bits encodes a mantissa. The fractional part of the

mantissa is represented by an integer (without a sign) M x :

M x = N m

m x , where: N m

= 2

23 , (2.2)

and the exponent is represented by a positive value E x resulting from the shift of e x by a constant B (biased exponent):

E x = e x + B, where: B = 127 (2.3)

and E x = 1 , . . . , 254 (we exclude special cases E x = 0 for 0 and subnormals, and E x = 255 for the infinities and NaN).

In what follows we confine ourselves to positive numbers (s x ≡ b S = 0). Bits of a floating-point number can be interpreted

as an integer given by:

I x = N m

E x + M x . (2.4)

Download	English	Version:

https://daneshyari.com/en/article/5775558

Download	Persian	Version:

https://daneshyari.com/article/5775558

Daneshyari.com

https://daneshyari.com/en/article/5775558
https://daneshyari.com/article/5775558
https://daneshyari.com/

