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a b s t r a c t 

We present a mathematical analysis of transformations used in fast calculation of inverse 

square root for single-precision floating-point numbers. Optimal values of the so called 

magic constants are derived in a systematic way, minimizing either relative or absolute er- 

rors. We show that the value of the magic constant can depend on the number of Newton–

Raphson iterations. We present results for one and two iterations. 
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1. Introduction 

In order to understand the behaviour of equations, functions or models, one has to simulate, compile or execute the 

functions or equations. They may involve not only the basic operators such as: addition, subtraction and multiplication but 

also the advanced operators such as division, square root, inverse square root and trigonometric functions. The response 

time of a processor is a critical factor. The faster is the processing speed of the underlying hardware, the quicker one can 

simulate or execute these models, equations or functions. In contrast to basic arithmetic operators the advanced operators 

are relatively complicated to design, slower and take up more hardware [1,2] . 

Floating-point inverse square root is widely used in several areas such as image and digital signal processing, communi- 

cations and design of scientific engines [1–4] . Many algorithms can be used to approximate the inverse square root function 

[1,3,5] . All of these algorithms require an initial seed to approximate function. 

If the initial seed is accurate, then iteration required for this function is less time-consuming, i.e., the function 

requires less cycles. In most of the cases, the initial seed is obtained from Look-Up Table (LUT) and the LUT con- 

sume significant silicon area of a chip. In this paper we obtain the initial seed using the so called magic constant 

[6–10] which does not require LUT. Then we approximate inverse square root function using the Newton–Raphson method 

once and twice. In both cases we derive analytically the best value of the magic constant solving exactly (up to round-off

errors) the non-trivial problem of choosing the best starting values for Newton–Raphson iterations [11] . 

We present the first mathematically rigorous description of the fast algorithm for computing inverse square root for 

single-precision IEEE Standard 754 floating-point numbers (type float ). 
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Fig. 1. The layout of a 32-bit floating-point number. 

1. float InvSqrt( float x){ 

2. float halfnumber = 0.5f ∗ x; 

3. int i = 

∗( int ∗) &x; 

4. i = R -(i � 1); 

5. x = 

∗( float ∗)&i; 

6. x = x ∗(1.5f-halfnumber ∗x ∗x); 

7. x = x ∗(1.5f-halfnumber ∗x ∗x); 

8. return x; 

9. } 

This code, written in C , will be referred to as function InvSqrt . It realizes a fast algorithm for calculation of the inverse 

square root. In line 3 bits of variable x (type float ) are transferred to variable i (type int ). In line 4 there is determined an 

initial value (then subject to the iteration process) of the inverse square root, where R is a “magic constant”. In line 5 bits 

of a variable i (type int ) are transferred to the variable x (type float ). Lines 6 and 7 contain subsequent iterations of the 

Newton–Raphson algorithm. 

The algorithm InvSqrt has numerous applications, in software [8,14,15] and hardware implementation [12,13,16] . The most 

important among them is 3D computer graphics, where normalization of vectors is ubiquitous. InvSqrt is characterized by 

a high speed, more than 3 times higher than in computing the inverse square root using library functions. This property is 

discussed in detail in [17] . One has to remember taht the InvSqrt works well on Intel processors but on some other archi- 

tectures it does not perform as well. For example, InvSqrt executed on the PowerPC processor has to include loading/storing 

between floating-point registers and integer registers (load-hit-store penalties) and hardware provided alternatives can be 

more effective [7] . 

The errors of the fast inverse square root algorithm depend on the choice of R . The original value was R = 0x5F3759DF 

[10,17] . Its motivation is not quite clear (certainly this is not the best choice), a possible explanation is given in [18] . Lomont 

found the best values of the magic constant numerically, testing the errors for all the floating-point numbers [11] . In sev- 

eral theoretical papers [11,17–20] (see also the Eberly’s monograph [7] ) attempts were made to determine analytically the 

optimal value (i.e. minimizing errors) of the magic constant. Lomont provided a quite detailed analysis showing how the 

magic number was chosen [11] , Eberly showed that in fact there are many magic constants that are quite effective [19] . 

In our paper we recover analytically the results of Lomont, presenting missing mathematical description of all steps of the 

fast inverse square root algorithm. In particular, we explain why the optimal value of the magic constant depends on the 

number of Newton–Raphson iterations. 

2. Preliminaries 

The value of a normal floating-point number can be represented as: 

x = (−1) s x (1 + m x )2 

e x , (2.1) 

where s x is the sign bit ( s x = 1 for negative numbers and s x = 0 for positive numbers), 1 + m x is the normalized mantissa 

(or significand), where m x ∈ [0, 1) and, finally, e x is an integer. 

In the case of the IEEE-754 standard, a floating-point number is encoded by 32 bits ( Fig. 1 ). The first bit corresponds 

to a sign, the next 8 bits correspond to an exponent e x and the last 23 bits encodes a mantissa. The fractional part of the 

mantissa is represented by an integer (without a sign) M x : 

M x = N m 

m x , where: N m 

= 2 

23 , (2.2) 

and the exponent is represented by a positive value E x resulting from the shift of e x by a constant B (biased exponent): 

E x = e x + B, where: B = 127 (2.3) 

and E x = 1 , . . . , 254 (we exclude special cases E x = 0 for 0 and subnormals, and E x = 255 for the infinities and NaN). 

In what follows we confine ourselves to positive numbers ( s x ≡ b S = 0 ). Bits of a floating-point number can be interpreted 

as an integer given by: 

I x = N m 

E x + M x . (2.4) 
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