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a b s t r a c t 

A diffusive and delayed viral infection model with nonlinear incidence has been studied, 

and the global dynamical behaviors of the original model is investigated by constructing 

Lyapunov functionals. Furthermore, the analysis is carried out for the discrete model which 

is obtained by applying the nonstandard finite difference (NSFD) scheme to the original 

continuous model. The global stability for the corresponding equilibria is investigated by 

constructing discrete Lyapunov functionals as well as the positivity and boundedness of 

solutions of the corresponding continuous model. The results imply that the discretization 

scheme can efficiently preserves the qualitative properties of solutions for the original con- 

tinuous model. Numerical experiments are carried out to support the theoretical results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Since samples cannot always be taken frequently from patients, or detection techniques of the virus may not be accurate, 

testing specific hypotheses based on clinical data is a challengeable task, which justifies the central role played by math- 

ematical models in describing the dynamics inside the host of various infectious diseases such as HBV, HCV, HIV and so 

on. Thus, many literatures have been studied [1–6] . For example, Manna and Chakrabarty [6] considered an HBV infection 

model with capsids which takes the following form ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂H 

∂t 
= s − μH(t) − kH(x, t) V (x, t) , 

∂ I 

∂t 
= kH(x, t) V (x, t) − δI(t) , 

∂D 

∂t 
= d 1 �D (x, t) + aI(x, t) − (β + δ) D (x, t) , 

∂V 

∂t 
= d 2 �V (x, t) + βD (x, t) − cV (x, t) , 

(1.1) 

where H ( t ), I ( t ), D ( t ) and V ( t ) denote the densities of the uninfected hepatocytes, infected hepatocytes, intracellular HBV 

DNA-containing capsids, and the virions at position x and at time t , respectively. The hepatocytes are assumed to be 
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produced from a source at rate s , has a natural death rate μ and gets infected by the virions at a rate k , with the in- 

fected hepatocytes clearing out at a rate δ. a represents the rate of production of HBV DNA-containing capsids. β is the 

rate at which the capsids are transmitted to blood. c is the death rate of virions. d 1 and d 2 are the diffusion coefficients 

of capsids and virions, respectively with � being the Laplacian operator. The global dynamics of the model (1.1) has been 

investigated in [6] by constructing Lyapunov functions. 

Note that model (1.1) does not take the time delay into account. In fact, for many infectious diseases, it is important 

to consider the influences of delays on the disease dynamics. In epidemiological models, delay can be caused by a variety 

of factors. In order to take the effect of time delay into consideration, Manna [7] and Manna and Chakrabarty [8] consid- 

ered a HBV infection model with two intracellular delays, one delay represents the time needed ( τ 1 ) in the production of 

productively infected hepatocytes from the uninfected ones, another delay ( τ 2 ) means the time spend in the production of 

matured intracellular HBV DNA-containing capsids which in turn contributes to the production of virions. Moreover, noticing 

that the bilinear incidence rate is a simple description of the infection in model (1.1) . However, as mentioned in [9] , a gen- 

eral incidence rate may help us to gain the unification theory by the omission of unessential details. Therefore, motivated 

by authors in [6–9] , we consider the following model ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂H 

∂t 
= s − μH(x, t) − kH(x, t) f (V (x, t)) , 

∂ I 

∂t 
= kH(x, t − τ1 ) f (V (x, t − τ1 )) − δI(x, t) , 

∂D 

∂t 
= d 1 �D (x, t) + aI(x, t − τ2 ) − (β + δ) D (x, t) , 

∂V 

∂t 
= d 2 �V (x, t) + βD (x, t) − cV (x, t) . 

(1.2) 

Here, the incidences are assumed to be the nonlinear responses to the concentrations of virus particles, taking the form 

kH ( x , t ) f ( V ( x , t )), where f ( V ) denote the force of infection by virions and satisfy the following properties [10] : 

f (0) = 0 , f ′ (V ) > 0 , f ′′ (V ) ≤ 0 . (1.3) 

Based on condition (1.3) , it follows from the Mean Value Theorem that 

f ′ (V ) V ≤ f (V ) ≤ f ′ (0) V. (1.4) 

Epidemiologically, condition (1.3) indicates that: (i) the disease cannot spread if there is no infection; (ii) the incidences 

kHf ( V ) becomes faster as the densities of the virions increase; (iii) the per capita infection rates by virions will slow down 

due to certain inhibition effect since (1.4) implies that ( f (V ) V ) ′ ≤ 0 . 

The initial conditions for model (1.2) are 

H(x, θ ) = φ1 (x, θ ) ≥ 0 , I(x, θ ) = φ2 (x, θ ) ≥ 0 , D (x, θ ) = φ3 (x, θ ) ≥ 0 , 

V (x, θ ) = φ4 (x, θ ) ≥ 0 , (x, θ ) ∈ 	̄ × [ −τ, 0] , (i = 1 , 2 , 3 , 4) , 
(1.5) 

and homogeneous Neumann boundary conditions 

∂D 

∂n 

= 0 , 
∂V 

∂n 

= 0 on ∂	 × (0 , + ∞ ) , (1.6) 

where τ = max { τ1 , τ2 } and (φi (x, θ )(i = 1 , 2 , 3 , 4) is h ̈o lder continuous in 	̄ × [ −τ, 0] , 	 is a bounded domain in R 

n with 

smooth boundary ∂	, and 

∂D 
∂n 

, ∂V 
∂n 

denotes the outward normal derivative on ∂	. 

Generally, the exact solution for a model like (1.2) is very difficult or even impossible to be determined. Hence, re- 

searchers seek numerical ones instead. However, how to select a proper discrete method so that the global properties of 

solutions of the corresponding continuous models can be efficiently preserved is still an open problem [11] . Mickens has 

made an attempt in this regard, by proposing a robust non-standard finite difference (NSFD) scheme [12,13] , which has been 

widely employed in the study of different kinds of epidemic models and one important advantage of Mickens’s method is 

that it can more efficient in preserving the global dynamics to the corresponding continuous epidemic models [6,14–18] . For 

example, Manna and Chakrabarty [6] used the NSFD scheme to discretize system (1.1) and found that the global dynamics 

of the discrete model are consistent with the original system. Therefore, motivated by authors in [6,12,13] , we can obtain 
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