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a b s t r a c t 

In this article, we give a mathematical framework to model the kinematics of the surface 

growth of objects such as some crustacean creatures. For this, a growth velocity in the di- 

rection of the Darboux vector field is defined at each point on a spatial generating curve. 

A local orthonormal frame (alternative moving frame) is added to each point of the gen- 

erating curve and a velocity is given in terms of local coordinate directions to obtain a 

system of differential equations. Using the analytical solutions of this system, various sur- 

face examples, including some seashells are provided and the shapes of these surfaces are 

illustrated. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Although the elastic deformation of the relation between the growth and stress is an important factor for soft body 

accretion, the hard body accretions, such as seashells, horns, bones, antlers, teeth, etc. are not likely to be deformed. Thus, 

the shapes of hard bodies emerge in a beautiful, mathematically elegant spherical and self-similar global structures. One 

element is the use of the growth velocity vectors for the mathematical modeling of this growth process. It is formed by 

the evolution of a generating curve which is characterized by increased growth, rate of formation and space orientation. 

The direction and speed of the deposition are defined by a vector field defined at each point on the generating curve. 

The formulation has general applicability, allowing for arbitrary growth rates without any assumption on the shape of the 

generating curve. 

Mathematical modeling of the surface growth give a relationship between the fields biology, geometry, mathematics and 

art. Also, mathematical modeling of biological processes is widely used in the search for biomedical phenomena. Especially 

for this, it is very important to define the disease-causing cells by means of a suitable mathematical model. An important 

application of studies in this field is given in the field of cancer biology [7,8] . In [9,10] , Ilert gives a sufficient and simplified 

concept to model seashells. Later, his second paper formulates the problem of seashell geometry entirely in three dimen- 

sional real space, presenting those equations of most use for practical digital computer simulations. Then in [11] , Deborah 

et al. present a method for modeling seashells, suitable for image synthesis purposes. They combine a geometric description 

of shell shapes with an activator–inhibitor model of pigmentation patterns on shell surfaces. In [12] , Noshita et al. develop 

a novel method for deriving microscopic growth rates from the macroscopic shapes of gastropod shells. It is shown that 

the growth of some living things, such as sea shells, can be explained by simple mathematical laws and given some related 

examples in [13–15] . 
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In [1] , Skalak et al. show how to construct various biologically relevant structures with appropriate selection of the 

growth vector field. An important element in their work is a completely local explanation. Also, the growth velocities are 

defined in terms of a fixed coordinate system. Then, in [3,5] Moulton et al. formulate a model of accretive growth which is 

fully local, generally applicable and analytically tractable. The importance of creating surfaces in this way is that it does not 

depend on computer algorithms. Rather, the shapes of complex surfaces are obtained by analytical solutions that depend on 

a few parameters, which can lead to a qualitative description of surface growth. The goal here is not to examine a specific 

structure (e.g. a spiral shell), but to begin with simple structures and slowly go to a complex structure and to establish 

local rules and relationships related to growth mechanisms. By doing so, it was determined how the local growth rules are 

linked to the spherical geometry that can be associated with biology. The developed model can generally be applied to the 

surface development processes. In the previous studies, it is considered a component of the growth velocity in the binormal 

direction for a planar curve to evolve and generate a surface. However, there are many different geometric shapes in the 

nature. Therefore, it may be more appropriate to use a spatial curve instead of a planar curve in the modeling of some 

growth processes. Therefore, it is considered a space curve instead of a planar curve in the present work. For the evolution 

of a space curve and a surface formation, there must be a growth component in the direction of the Darboux vector. For 

this, the growth vector field is defined in terms of an alternative moving frame { N , C , W } on the generating curve. This 

frame ideally describes the growth in the direction of the Darboux vector. In this manner, a different perspective is given to 

understand and model the underlying mechanisms in the growth process. 

In Section 2 , it is described the modeling of the Darboux growth process and formulated equations for this recognition. 

In Section 3 , the conditions for the local velocity to keep the shape constant during the growth process are derived by 

taking a general helix (a curve of constant slope, see [6] ). In Section 4 , it is obtained the equations for the velocity vector 

components for an arbitrary space curve. Also, some examples in each section are given to show the calculation steps 

and illustrate the relationship between geometry and the local velocity field. In Section 4.1 , it is mentioned the biological 

interpretations for some of the obtained surfaces. 

2. Definition of the Darboux growth 

In [3,5] , the growth velocity field q ( s , t ) is defined along a generating curve r ( s , 0). The authors consider the accretive 

growth in the direction of the binormal vector at every point on the generating curve. It describes the evolution of the 

generating curve and hence defines a surface r ( s , t ). In this section, the accretive growth along the Darboux direction at 

every point on a non-planar generating curve is defined. For this, the alternative moving frame { N , C , W } is considered 

given in [2,4] . 

Let r ( s , t ) be a differentiable space curve in R 

3 . Take the orthonormal frame { d 1 , d 2 , d 3 } attached to r ( s , t ). Without loss 

of generality, choose d 3 as the unit normal vector defined as: 

r ́≡ ∂ s r(s, t) = Dλ = λd 3 . 

Here, D v = v 1 d 1 + v 2 d 2 + v 3 d 3 for every v ∈ R 

3 . 

The matrices U = [ 
0 u 3 −u 2 −u 3 0 u 1 

u 2 u 1 0 
] and W = [ 

0 w 3 −w 2 −w 3 0 w 1 
w 2 w 1 0 

] describe the rotation and angular velocity of the local basis on the 

generating curve, respectively. Then, 

D ́≡ ∂ s D = DU 

˙ D ≡ ∂ t D = DW. 

If the generating curve and attached frame are known, then the growth velocity can be defined as: 

q (s, t) = ∂ t r = 

˙ r (s, t) = D ̄q 

where q̄ = (q 1 , q 2 , q 3 ) is the growth velocity expressed in the local frame. Therefore, following six nonlinear first order 

partial differential equations for seven depended variables (called compatibility equations) are obtained: 

q 1 ́+ u 2 q 3 + u 3 q 2 = λw 2 (2.1) 

q 2 ́+ u 3 q 1 − u 1 q 3 = −λw 1 (2.2) 

q 3 ́+ u 1 q 2 − u 2 q 1 = 

˙ λ (2.3) 

˙ u 1 − w 1 ́= u 2 w 3 − w 2 u 3 (2.4) 

˙ u 2 − w 2 ́= u 3 w 1 − w 3 u 1 (2.5) 

˙ u 3 − w 3 ́= w 2 u 1 − u 2 w 1 . (2.6) 

Integrating the equation ∂ t r(s, t) = D ̄q gives the surface. Since the alternative frame { N , C , W } is used, the matrix U is in the 

following form: 

U = 

[ 

0 g − f 
−g 0 0 

f 0 0 

] 
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