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a b s t r a c t 

In this paper we show how the Parameter Switching algorithm, utilized initially to approx- 

imate attractors of a general class of nonlinear dynamical systems, can be utilized also as 

a synchronization-induced method. Two illustrative examples are considered: the Lorenz 

system and the Rabinovich–Fabrikant system. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

A number of various synchronization methods have been developed, such as complete or identical synchronization, phase 

and lag synchronization, generalized synchronization, intermittent lag synchronization, imperfect phase synchronization, al- 

most synchronization and so on (see e.g. [1–3] , or [4] ). 

In this paper a new synchronization-induced method, which is based on the Parameter Switching (PS) algorithm [5] , is 

proposed. It is demonstrated [6–8] that this method can be effectively used for the approximation of attractors of a given 

nonlinear dynamical system which depends linearly on a real parameter. 

Let us consider the following initial value problem (IVP), which models a large class of continuous-time nonlinear au- 

tonomous dynamical systems depending on a single real control parameter p , such as the Lorenz system, Rösler system, 

Chen system, Lotka–Volterra system, Rabinovich–Fabrikant system, Hindmarsh–Rose system, Lü system, classes of minimal 

networks and many others, in the following form 

˙ x (t) = f (x (t)) + pAx (t) , x (0) = x 0 , (1) 

where t ∈ I = [0 , T ] , x 0 ∈ R 

n , p ∈ R the control parameter, A ∈ R 

n ×n a constant matrix, and f : R 

n → R 

n a nonlinear function. 

For example, we can consider the IVP with n = 3 for the Lorenz system 

·
x 1 = σ (x 2 − x 1 ) , 
·
x 2 = x 1 (ρ − x 3 ) − x 2 , 
·
x 3 = x 1 x 2 − βx 3 , 

(2) 
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Fig. 1. PSLS algorithm, a sketch. 

Fig. 2. PSLS for Lorenz system, for p ∗ = 93 , using the scheme [1 p 1 , 1 p 2 ] with p 1 = 90 and p 2 = 96 . (a) Phase overplots of the synchronized cycles. (b) Time 

series overplots of the first components x 1 and x ∗1 revealing the lag τ between the two cycles. 
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