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a b s t r a c t 

In games especially large scale extensive games, players’ actual views of the game might be 

different from the real one, because of the limit of their computational power. Moreover, 

players’ views on the underlying game vary from person to person. Based on some existing 

work on modelling players’ limited foresight in games, we study several interesting types 

of players in terms of the characteristics of their actual views. The underlying model is 

closely connected to the well-known algorithm called α − β pruning, and an algorithmic 

procedure refining classical backward-induction is designed for strategy choosing in the 

actual process of playing such games. Further, we study the dynamic evolution of players’ 

foresight and show the resulting preference change. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Focusing on decision-making of players in cooperative or competitive situations to achieve optimal goals, game the- 

ory provides a series of mathematical models for explaining and predicting equilibrium and dynamics [1–4] in interactive 

systems [5,6] , which have applications in diverse fields including social science [7] , computer science [8] , economics [9] , bi- 

ology [10–12] , etc. In traditional game theory, there are two important aspects about extensive games, known as quantified 

preferences over outcomes and assumption of common knowledge , calling for potential improvement. A game of quantified 

preferences assumes that all outcomes are linearly ordered, usually determined by a utility function. However, as claimed 

by Slade [13] , not all outcomes can be evaluated purely by utility functions in certain games. In reality, to obtain the exact 

payoff of an outcome is often difficult or computationally expensive, and a player is often forced to make a decision in pres- 

ence of imprecise or incomplete information, in which situation two available options to a player might be incomparable 

to each other. Therefore, it is useful to study the notion of preference by qualitative binary relations, especially when there 

does not exist a linear order on all options in hand. 

Another assumption in most of the existing works is that the entire structure of a game is common knowledge to all 

players. Again, this assumption is sometimes too strong. In a game like chess, the actual game space is exponential in 

the size of the game configuration, and may have a computation path too long to be effectively handled by most existing 

computers. Sub-optimal solutions are often desirable by considering only limited information or bounded steps foreseeable 

by a player that has relatively small amount of computation resources. 
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Fig. 1. An example of extensive games. 

Several attempts have been made to achieve a closer match with reality. In recent years, Halpern et al. studied games 

with unawareness [14,15] , where players may have no access to the whole game tree when they make decisions due to their 

unawareness of other player’s strategies. Grossi and Turrini pushed further beyond Halpern’s work by proposing the concept 

of games with short sight [16] , in which players can only see part of the game tree. Nevertheless, Grossi and Turrini only 

offered a general frame for sight functions. They did not study the relationship between different classes of sight functions 

and players, nor did they explore dynamics of sight functions and the evolution of preference in games [17] . 

In this paper, we propose a more realistic model for extensive games, which represents players’ preference qualitatively 

instead of using numeric payoffs. We outreach the initial model of extensive games with short sight in several aspects, 

including characterizing types of players in terms of their sight functions . Interestingly, we connect the α − β pruning, a 

well-known and realistic search algorithm for two-player zero-sum games [18] , with sight filtration . Furthermore, in order to 

compute an equilibrium path of qualitative game playing, we introduce a modified backward induction algorithm. Besides, 

we investigate sight dynamics with respect to different types of players, and show that changes of players’ sight would lead 

to the changes of their preferences. 

This paper is organized as follows: The next section introduces extensive games and subgame perfect equilibrium. Then 

we study the model of games with short sight. After that, we discuss sight dynamics and preference change. Finally, we 

concludes the paper with further research issues. 

2. Extensive games with perfect information 

In this section, we recall the definition of extensive games with perfect information and subgame perfect equilibrium in 

these games. 

Definition 2.1 (Extensive game) . An extensive game is a tuple G = (N, V, A, t, �i , �i ) , where ( V , A ) is a tree with V a set of 

nodes or vertices including a root v 0 , and A ⊆V 

2 a set of arcs. N is a non-empty set of the players, and �i is a transitive and 

reflexive binary relation on V for each player i , which denotes player i ’s preference over any two nodes. For any v and v ′ in 

V , if (v , v ′ ) ∈ A, we call v ′ a successor of v , thus A is also regarded as the successor relation. Leaves are the nodes that have 

no successors, denoted by Z . t is turn function assigning a member of N to each non-terminal node. �i is a non-empty set of 

strategies. A strategy of player i is a function σi : { v ∈ V \ Z | t(v ) = i } → V which assigns a successor of v to each non-terminal 

node when it is i ’s turn to move. 

For a node v we write l(v ) for the distance from the root v 0 to v . And the depth of a game tree is the maximal dis- 

tance among all the nodes, denoted as L = max { l(v ) | v ∈ V } . As usual, σ = (σi ) i ∈ N represents a strategy profile which is a 

combination of strategies from all players and � represents the set of all strategy profiles. For any M ⊆N , σ−M 

denotes the 

collection of strategies in σ excluding those for players in M . We define an outcome function O : � → Z assigning leaf nodes 

to strategy profiles, i.e., O ( σ ) is the outcome if the strategy profile σ is followed by all players starting from the root v 0 . 
O (σ−M 

) is the set of outcomes players in M can enforce provided that the other players strictly follow the strategy profile σ . 

Note that the preference relation defined here is different from the conventional ones. Preference can be defined as 

connected, e.g., [19] , while more generally we allow the incomparable cases between two nodes, and work with a partial 

order over nodes in the game. We assume that players may not be able to precisely determine the entire computation paths 

leading to leaves, and allow them to make estimations on the goodness of non-terminal nodes. For any two nodes u and v 
in V , if u �i v but not v �i u, then u is strictly preferable to v for player i , and we write it as u �i v . 

Example 2.1. Take the game shown in Fig. 1 as an example, where two players a and b take turns to move. Specifically, 

player a moves at v 0 , and player b moves after a going to v 1 or v 2 . The formal representation for the game is as follows: 

G = (N, V, A, t, �i , �i ) , where N = { a, b} ; V = { v 0 , v 1 , v 2 , v 3 , v 4 , v 6 } ; A = { (v 0 , v 1 ) , (v 0 , v 2 ) , (v 1 , v 3 ) , (v 1 , v 4 ) , (v 2 , v 5 ) , (v 2 , v 6 ) } ; 
t(v 0 ) = a, t(v 1 ) = t(v 2 ) = b; Player a has two strategies σ a and σ ′ 

a such that σa (v 0 ) = v 1 and σ ′ 
a (v 0 ) = v 2 , while player 2 has 

four strategies σ 1 
b 
, σ 2 

b 
, σ 3 

b 
and σ 4 

b 
such that σ 1 

b 
(v 1 ) = v 3 and σ 1 

b 
(v 2 ) = v 5 , σ 2 

b 
(v 1 ) = v 3 and σ 2 

b 
(v 2 ) = v 6 , σ 3 

b 
(v 1 ) = v 4 and 

σ 3 
b 
(v 2 ) = v 5 , σ 3 

b 
(v 1 ) = v 4 and σ 2 

b 
(v 2 ) = v 6 . Naturally, combining strategies for the two players results in 8 strategy profiles. 

Preference relation for each player depends on the payoffs of nodes. Suppose, e.g., player b gets a higher payoff at v 3 than 

v 4 , then we have v 3 �b v 4 . 
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