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In this paper, an efficient numerical technique based on the Chebsyhev orthogonal poly- 

nomials is established to obtain the approximate solutions of system of two-dimensional 

fractional-order PDEs with initial conditions. We construct the corresponding differential 

operational matrix of fractional-order, and then transform the problem into a system of 

linear algebra equations. Compared with other analytical or semi-analytical methods, ours 

can achieve better convergence accuracy only small terms are expanded. Moreover the pro- 

posed algorithm is simple in theoretical derivation and numerical simulation. In our study, 

the convergence analysis of the system is emphatically investigated than other numerical 

approaches. Lastly, three numerical examples are applied to test the algorithm and that 

the obtained numerical results show that our approach is effective and robust. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Fractional calculus theory is an important theoretical branch of mathematical theory [1] , which has played an important 

role in various fields such as complex physical, mechanical, biological and engineering. For example, fractional calculus has 

been applied to model the nonlinear oscillation of earthquake [2] , fluid-dynamic traffic [3] , continuum and statistical me- 

chanics [4] , signal processing [5] , control theory [6] , and dynamics of interfaces between nanoparticles and subtracts [7] . In 

these practical applications, the fractional calculus has a certain geometric and physical meaning. In view of great practi- 

cal significance for fractional calculus, so it is very important to study the fractional-order PDEs. In general, the analytical 

solutions of fractional-order PDEs cannot be easily obtained, so it is crucial to obtain the numerical solutions of these equa- 

tions. In recent years, the researches on the numerical methods of fractional-order PDEs are increasingly growing, so as to 

approximately predict the tendency of the analytical solutions by the numerical solutions. 

Various numerical approaches for different types of fractional-order PDEs have been presented. These methods include 

Chebyshev and Legendre polynomials methods [8,9] , wavelets methods [10–12] , piecewise constant orthogonal functions 

methods [13,14] , spectral methods [15,16] , collocation methods [17–19] , differential transform methods [20,21] , Adomian 
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Decomposition Methods [22–24] and so on. In Ref. [25] , the authors proposed Legendre wavelets method to solve system 

of nonlinear fractional differential equations. In Ref. [26] , the authors acquired the numerical solution for system of frac- 

tional differential equations using a new approach called the Iterative Laplace transform method. In Ref. [27] , the authors 

applied multiple fractional power series to obtain the analytical solution for system of nonlinear fractional Burger differen- 

tial equations. In view of the above works, an orthogonal function based on the Chebyshev polynomials is applied to obtain 

the numerical solutions of system of two-dimensional fractional-order PDEs. This proposed algorithm will produce profound 

significance for solving real fractional problems. 

The current paper is organized as follows: in Section 2 , some basic definitions and mathematical preliminaries of frac- 

tional calculus are introduced. The operational matrix of fractional-order differentiation is given in Section 3 . We mainly 

illustrate the proposed algorithm in Section 4 . In Section 5 , the convergence analysis of the system is investigated. In 

Section 6 , the proposed approach is tested by three numerical examples. Finally, a conclusion is drawn in Section 7 . 

2. Preliminaries and notations 

2.1. The basic definitions of fractional integral and differential operator 

Definition 1. The Riemann–Liouville fractional integral operator ( I α f ) of order α is 

( I α f ) ( t ) = 

⎧ ⎨ 

⎩ 

1 

�( α) 

∫ t 

0 
( t − τ ) 

α−1 f ( τ ) d τ, α > 0 ;
f ( t ) , α = 0 . 

(1) 

and the fractional differential operator ( D 

α f ) of order α is 

( D 

α f ) ( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

�( m − α) 

d 

m 

d t m 

∫ t 

0 

f ( s ) 

( t − s ) 
α−m +1 

d s, α > 0 , m − 1 ≤ α < m ;
d 

m f ( t ) 

d t m 

, α = m. 

(2) 

Definition 2. The Caputo definition of fractional differential operator ( c D 

α f ) of order α is defined as 

c D 

α f ( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

�( m − α) 

∫ t 

0 

f ( m ) ( τ ) 

( t − τ ) 
α−m +1 

d τ, m − 1 ≤ α < m ;
d 

m f ( t ) 

d t m 

, α = m. 

(3) 

For the Caputo derivative, we have 

c D 

αt β = 

⎧ ⎨ 

⎩ 

0 , for β ∈ N 0 and β < � α� ;
�( β + 1 ) 

�( β + 1 − α) 
t β−α, for β ∈ N 0 and β ≥ � α� or β / ∈ N 0 and β > � α	 . 

(4) 

2.2. Properties of the Chebyshev polynomials 

The well-known Chebyshev polynomials are defined on the interval [ −1, 1] and can be determined with the aid of the 

following recurrence formula: 

T i +1 ( t ) = 2 t T i ( t ) − T i −1 ( t ) , i = 1 , 2 , . . . 

where T 0 ( t ) = 1 and T 1 ( t ) = t . In order to use these polynomials on the interval x ∈ [0, 1], we define the Chebyshev polyno- 

mials by introducing the change of variable t = 2 x −1. Let the Chebyshev polynomials T i (2 x −1) are denoted by T i ( x ), then 

T i ( x ) can be obtained as follows [28] : 

T i +1 ( x ) = 2 ( 2 x − 1 ) T i ( x ) − T i −1 ( x ) , i = 1 , 2 , . . . (5) 

where T 0 ( x ) = 1 and T 1 ( x ) = 2 x −1. The analytic form of the Chebyshev polynomials T i ( x ) of degree i is given by 

T i ( x ) = i 

i ∑ 

k =0 

( −1 ) 
i −k ( i + k − 1 ) ! 2 

2 k 

( i − k ) ! ( 2 k ) ! 
x k , (6) 

where T i (0) = ( −1) i and T i (1) = 1. 

The orthogonally condition is ∫ 1 

0 

T j ( x ) T k ( x ) w ( x ) d x = h k , (7) 

where w (x ) = 

1 √ 

x −x 2 
and h k = { 

b k 
2 π, k = j, 

0 , k � = j, 
b 0 = 2 , b k = 1 , k ≥ 1 . 
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