
Applied Mathematics and Computation 313 (2017) 367–383 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Numerical computation of hypersingular integrals on the real 

semiaxis 

Maria Carmela De Bonis a , Donatella Occorsio 

a , ∗

Department of Mathematics, Computer Science and Economics, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy 

a r t i c l e i n f o 

MSC: 

65D30 

41A05 

Keywords: 

Hadamard finite part integrals 

Approximation by polynomials 

Orthogonal polynomials 

Gaussian rules 

a b s t r a c t 

In this paper we propose some different strategies to approximate hypersingular 

integrals 

∫ 
= 

+ ∞ 

0 

G(x ) 

(x − t) p+1 
dx, 

where p is a positive integer, t > 0 and the integral is understood in the Hadamard finite 

part sense. Hadamard Finite Part integrals (shortly FP integrals), regarded as p th derivative 

of Cauchy principal value integrals, are of interest in the solution of hypersingular BIE, 

which model many different kind of Physical and Engineering problems (see [1] and the 

references therein, [2], [3, 4]). 

The procedure we employ here is based on a simple tool like the “truncated” Gaussian 

rule (see [5]), conveniently modified to remove numerical cancellation. We will consider 

functions G having different decays at infinity. The method is shown to be numerically sta- 

ble and convergent and some error estimates in suitable Zygmund-type spaces are proved. 

Finally, some numerical tests which confirm the efficiency of the proposed procedures are 

presented. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Hypersingular integrals, defined in [6] , are of interest, for instance, in the numerical solution of hypersingular integral 

equations. As it is known, such kind of equations are model for many physics and engineering problems (see [7] and the 

references therein, [2,3,7–9] ). 

There is a wide literature devoted to the computation of the Finite Part (FP) of divergent integrals ∫ 
= 

+ b 

a 

g(x ) 

(x − t) p+1 
dx, p ∈ { 1 , 2 , . . . } , a < t < b, 

for bounded intervals [ a , b ]. Limiting ourselves to global approximation methods for p > 0, we mention among them 

[1,7,8,10–17,34] . An historical overview on the numerical methods for FP integrals and many properties holding in the 

case of bounded domains can be found in [1,7,8,18] . About the papers which employ Gauss-type rules, these are nearly all 
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devoted to the interval [ −1 , 1] . A more general approach introduced in [9] looks for determining a Gauss quadrature rule 

w.r.t the weight w (x ) 

(x −t) 2 
, where w (x ) is any Gauss classical weight on finite or infinite ranges. However, the Authors discuss 

computational details only in the interval [ −1 , 1] and for some choices of Jacobi weights w . So, FP integrals over unbounded 

domains received less attention in the past. 

On the other hand hypersingular integrals ∫ 
= 

+ ∞ 

0 

G(x ) 

(x − t) p+1 
dx, p ∈ { 1 , 2 , . . . } , t > 0 (1) 

are employed in the solution of hypersingular integral equations coming from Neumann 2D elliptic problems on semiplanes 

by a Petrov-Galerkin infinite BEM approach [4] . In [4] FP integrals on [ a, + ∞ ) , a > 0 are reduced to the interval [0, 

1] and approximated by means of product integration rules. Nevertheless, non linear transformations can get worse the 

density function G (see [19] ), while the straightforward computation on unbounded ranges can add computational and also 

theoretical difficulties. 

Thus, we propose here some global strategies to approximate integrals of the type (1). The proposed framework allows 

to consider functions G having different decays at infinity and uses different approaches, according to the position of t > 0. 

At first we consider the case G(x ) = f (x ) w α(x ) , where w α(x ) = e −x x α, α ≥ 0 , is a Laguerre weight. Following a very 

standard way, we start from the decomposition 

H p ( f w α, t) := 

∫ 
= 

+ ∞ 

0 

f (x ) 

(x − t) p+1 
w α(x ) dx 

= 

∫ + ∞ 

0 

f (x ) − ∑ p 

k =0 
f (k ) (t) 

k ! 
(x − t) k 

(x − t) p+1 
w α(x ) dx + 

p ∑ 

k =0 

f (k ) (t) 

k ! 

∫ 
= 

+ ∞ 

0 

w α(x ) 

(x − t) p+1 −k 
dx, 

=: F p ( f w α, t) + 

p ∑ 

k =0 

f (k ) (t) 

k ! 
H p−k (w α, t) (2) 

focusing the attention on the first right-hand integral, since the remaining FP integrals are computable with high accuracy 

by standard routines (see Section 6 ). We use a simple tool like the Gauss–Laguerre rule properly modified in order to get 

a stable, convergent and efficient procedure to approximate the integral F p ( f w α, t) . In particular, we use the “truncated”

version of the Gauss–Laguerre rule [5] (see also [35] ) in order to reduce the number of function computations and possible 

overflow ranges. Furthermore, for any fixed t , we select a suitable subsequence of “truncated” Gauss–Laguerre rule for 

avoiding the severe numerical cancellation arising when t is “close” to a Gaussian node. The approach for t “large” can be 

treated in a cheaper way, with a shrewd application of the Gaussian rule directly to H p ( f w α, t) . 

As second case we will consider density functions of the type G(x ) = g(x ) / (1 + x ) β , β > 1 . Indeed, by applying the 

aforesaid procedure to ∫ 
= 

+ ∞ 

0 

˜ g (x ) 

(x − t) p+1 
e −x dx, ˜ g (x ) = 

g(x ) 

(1 + x ) β
e x , (3) 

the results may be rather poor, especially when G(x ) “slowly” decays to zero as x → + ∞ (see [20] about Gaussian rule de- 

ficiencies). For this reason, in some cases presented below, we show how to gain better results by making a preliminary 

change of variable and by applying then the above procedure. We complete this argument determining conditions on g un- 

der which the global scheme is stable and fast convergent. Also in this case, when t is “large” we suggest a different strategy. 

Since the computation of the derivatives required for implementing the method can bring difficulties to the algorithm, 

we complete the description showing how to approximate { f (k ) } p 
k =0 

by means of the derivatives of a suitable Lagrange 

polynomial interpolating f . In view of the behavior of the Lagrange polynomial sequence, under appropriate assumptions, 

the rate of convergence of the method remains unchanged, except the extra factor log m . 

The paper is organized as follows. In Section 2 some basic results about orthogonal polynomials and function spaces, 

needed to introduce the main results, are collected. Section 3 contains the definition of Hadamard finite part integrals over 

(0 , + ∞ ) for functions f belonging to suitable Zygmund-type spaces, and some their properties. In Section 4 the numerical 

method to approximate H p ( f w α, t) is described and some results about the stability and the rate of convergence are stated. 

In the successive Section 5 we show how it is possible to speed up the convergence of the method for integrals of the 

type (3) . In Section 6 we show how to avoid the computation of the derivatives of the function f . Section 7 contains some 

computational details useful in the implementation process. In Section 8 some numerical experiments are given to confirm 

the efficiency of the procedure. Moreover, comparisons with the method in [4] are shown. Finally, in Section 9 the proofs 

of the main results are stated. 

2. Basic definitions and properties 

Along all the paper the constant C will be used several times, having different meaning in different formulas. Moreover 

from now on we will write C � = C(a, b, . . . ) in order to say that C is a positive constant independent of the parameters 
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