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This paper aims at the global regularity of solutions to the two-dimensional (2D) incom- 

pressible magneto-micropolar equations with partial dissipation. We are able to deal with 

two partial dissipation cases and establish the global regularity of solutions for each case. 
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1. Introduction 

The 3D incompressible magneto-micropolar fluid equations can be written as ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂ t u + u · ∇u = (μ + χ)�u − ∇π + b · ∇b + 2 χ∇ × ω, 

∂ t ω + u · ∇ω − α∇∇ · ω + 2 χ� = κ�ω + 2 χ∇ × u, 

∂ t b + u · ∇b = ν�b + b · ∇u, 

∇ · u = 0 , ∇ · b = 0 , 

(u, ω, b)(x, y, z, 0) = (u 0 , ω 0 , b 0 )(x, y, z) , 

(1.1) 

where (x, y, z) ∈ R 

3 and t ≥ 0, u ( x , y , z , t ), ω( x , y , z , t ), b ( x , y , z , t ) and π ( x , y , z , t ) denote the velocity of the fluid, micro- 

rotational velocity, the magnetic field and the hydrostatic pressure respectively. μ, χ and 

1 
ν are, respectively, kinematic 

viscosity, vortex viscosity and magnetic Reynolds number. κ and α are angular viscosities. By setting 

u = (u 1 (x, y, t) , u 2 (x, y, t) , 0) , ω = (0 , 0 , ω(x, y, t)) , b = (b 1 (x, y, t) , b 2 (x, y, t) , 0) , 

the 3D magneto-micropolar equations reduce to the 2D magneto-micropolar equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∂ t u + u · ∇u = (μ + χ)�u − ∇π + b · ∇b + 2 χ∇ × ω, 

∂ t ω + u · ∇ω + 2 χ� = κ�ω + 2 χ∇ × u, 

∂ t b + u · ∇b = ν�b + b · ∇u, 

∇ · u = 0 , ∇ · b = 0 , 

(u, ω, b)(x, y, 0) = (u 0 , ω 0 , b 0 )(x, y ) . 

(1.2) 
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The magneto-micropolar fluid equations (1.2) was considered in [1,9,10] , where (1.2) was used to describe the motion of an 

incompressible, electrically conducting micropolar fluid in the presence of an arbitrary magnetic field. A generalization of 

the 2D magneto-micropolar equations (1.2) is given by 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ t u 1 + (u · ∇) u 1 + ∂ x π = μ11 ∂ xx u 1 + μ12 ∂ yy u 1 + (b · ∇) b 1 + 2 χ∂ y ω, 

∂ t u 2 + (u · ∇) u 2 + ∂ y π = μ21 ∂ xx u 2 + μ22 ∂ yy u 2 + (b · ∇) b 2 − 2 χ∂ x ω, 

∂ t ω + (u · ∇) ω + 2 χω = κ1 ∂ xx ω + κ2 ∂ yy ω + 2 χ�, 

∂ t b 1 + (u · ∇) b 1 = ν11 ∂ xx b 1 + ν12 ∂ yy b 1 + b · ∇u 1 , 

∂ t b 2 + (u · ∇) b 2 = ν21 ∂ xx b 2 + ν22 ∂ yy b 2 + b · ∇u 2 , 

∇ · u = 0 , ∇ · b = 0 , 

(u, ω, b)(x, y, 0) = (u 0 , ω 0 , b 0 )(x, y ) , 

(1.3) 

where � = ∇ × u = ∂ x u 2 − ∂ y u 1 . Clearly, if 

μ11 = μ12 = μ21 = μ22 = μ + χ, κ1 = κ2 = κ, ν11 = ν12 = ν21 = ν22 = ν, 

then (1.3) reduces to the standard 2D magneto-micropolar equations in (1.2) . This generalization is capable of modeling the 

motion of anisotropic fluids for which the diffusion properties in different directions are different. In fact, in certain physical 

regimes and under suitable scaling, certain components of the dissipation can become small and be ignored, as in the case 

of Prandtl’s boundary layer equations. The horizontal velocity equation of Prandtl’s boundary layer theory only contains the 

vertical dissipation (no horizontal dissipation). It may be possible in certain physical circumstances the velocity equation 

concerned here has only partial viscosity dissipation. In addition, mathematically, (1.3) allows us to explore the smoothing 

effects of various partial dissipations. 

The magneto-micropolar equations play an important role in engineering and physics, and the mathematical study of 

this equations has attracted many mathematicians (see, e.g., [2,14–19,22] ). When (1.2) has full dissipation (namely, μ, χ , κ , 

ν > 0), the global existence and uniqueness of solutions was obtained in [15,18] . In the case of inviscid magneto-micropolar 

equations, the global regularity problem is still a challenging open problem. Therefore, it is natural to study the intermediate 

cases, namely, (1.3) with partial dissipation. Due to the complex structure of (1.3) , when there is only partial dissipation, the 

global regularity problem can be quite difficult. However, several important progresses have recently been made on this di- 

rection. In [22] , Yamazaki obtained the global regularity of (1.3) with zero angular viscosity (namely, κ1 = κ2 = 0 and other 

coefficients being positive). In [2] , the global well-posedness of (1.3) with mixed partial dissipation (namely, μ11 = μ21 = 

ν12 = ν22 = κ2 = 0 and μ12 = μ22 = ν11 = ν21 = κ1 = 1 or μ11 = μ21 = ν12 = ν22 = κ2 = 1 and μ12 = μ22 = ν11 = ν21 = κ1 = 

0 ) was obtained by Cheng and Liu. Very recently, Regmi and Wu [16] studied (1.3) with μ11 = μ22 = ν12 = ν22 = κ2 = 0 

and μ12 = μ21 = ν11 = ν21 = κ1 = 1 or μ11 = μ12 = ν11 = ν21 = κ1 = 1 and μ21 = μ22 = ν12 = ν22 = κ2 = 0 , and obtained 

the global regularity of solutions of (1.3) with these partial dissipations. 

When ω = 0 or b = 0 , the 2D magneto-micropolar equations (1.2) reduces to the 2D magneto-hydrodynamic equations or 

2D micropolar equations, respectively. Quite a few important global regularity results are available for these two equations 

with partial dissipation, see, e.g., [3–8,11–13,20,21] . 

The focus of this paper will be on the global well-posedness problem on 2D magneto-micropolar equations (1.3) with 

partial dissipation. We deal with two partial dissipation cases and establish the global regularity for each case. The main 

results are as follows. Without loss of generality, we set χ = 

1 
2 in the rest of the paper. 

The first case is to set μ11 = μ22 = ν21 = ν22 = κ1 = 0 and μ12 = μ21 = ν11 = ν12 = κ2 = 1 . Therefore, (1.3) reduces to 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ t u 1 + (u · ∇) u 1 + ∂ x π = ∂ yy u 1 + (b · ∇) b 1 + ∂ y ω, 

∂ t u 2 + (u · ∇) u 2 + ∂ y π = ∂ xx u 2 + (b · ∇) b 2 − ∂ x ω, 

∂ t ω + (u · ∇) ω + ω = ∂ yy ω + �, 

∂ t b 1 + (u · ∇) b 1 = ∂ xx b 1 + ∂ yy b 1 + b · ∇u 1 , 

∂ t b 2 + (u · ∇) b 2 = b · ∇u 2 

∇ · u = 0 , ∇ · b = 0 , 

(u, ω, b)(x, y, 0) = (u 0 , ω 0 , b 0 )(x, y ) . 

(1.4) 

Theorem 1.1. Assume (u 0 , ω 0 , b 0 ) ∈ H 

2 (R 

2 ) , and ∇ · u 0 = ∇ · b 0 = 0 . Then the 2D magneto-micropolar equations (1.4) has a 

unique global classical solution ( u , ω, b ) satisfying, for any T > 0, 

(u, ω, b) ∈ L ∞ ([0 , T ] ; H 

2 (R 

2 )) . 
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