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a b s t r a c t 

We describe and test numerically an adaptive meshless generalized finite difference 

method based on radial basis functions that competes well with the finite element method 

on standard benchmark problems with reentrant corners of the boundary, sharp peaks and 

rapid oscillations in the neighborhood of an isolated point. This is achieved thanks to sig- 

nificant improvements introduced into the earlier algorithms of Davydov and Oanh (2011), 

including a new error indicator of Zienkiewicz–Zhu type. 
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1. Introduction 

Let us consider the Dirichlet boundary value problem: find u : � → R such that 

Lu = f on �, u | ∂� = g, (1) 

where L is a linear elliptic differential operator of second order, � ⊂ R 

2 is a given bounded domain, the function f is defined 

on �, and the function g is defined on the boundary ∂� of �. A generalized finite difference discretization of the Dirichlet 

problem (1) is given by the following linear system with respect to the vector ˆ u = [ ̂  u ξ ] ξ∈ �
∑ 

ξ∈ �ζ

w ζ ,ξ ˆ u ξ = f (ζ ) , ζ ∈ �int ; ˆ u ξ = g(ξ ) , ξ ∈ ∂�, (2) 

where 

• � ⊂ � is the set of discretization centers; 

• ˆ u represents the approximation of the solution u of (1) at the points ξ ∈ �; 
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• ∂� := �∩ ∂� is the set of boundary discretization centers; 

• �int := ��∂� is the set of interior discretization centers; 

• �ζ is a set (called the stencil support of ζ ) that consists of the considered center ζ and some selected neighbor points 

ξ i ∈ �; 

• w ζ ,ξ ∈ R are the stencil weights chosen such that 
∑ 

ξ∈ �ζ
w ζ ,ξ u (ξ ) is an approximation of Lu ( ζ ). 

To set up the system, three tasks have to be addressed: (a) how to generate �, (b) how to choose the stencil supports 

�ζ , and (c) how to compute suitable weights w ζ ,ξ . 

In the RBF-FD method the weights w ζ ,ξ , ξ ∈ �ζ , are generated through the interpolation with radial basis functions. 

Referring to [3,6] for further details and references, we briefly describe this approach. Let φ : R + → R be a positive definite 

radial basis function [2] , for example the Gaussian function 

φ(r) = e −ε 2 r 2 , (3) 

where ε is the shape parameter . Given ζ ∈ �int and �ζ = { ζ0 , ζ1 , . . . , ζk } ⊂ �, with ζ0 = ζ , we set ϕ i (x ) = φ(‖ x − ζi ‖ ) , 
x ∈ R 

2 , where ‖ · ‖ denotes the Euclidean norm in R 

2 . Assuming for simplicity that the operator L has the form 

Lu (x ) = 
u (x ) + c(x ) u (x ) , 

we first find the weights w i such that 


s (ζ ) = 

k ∑ 

i =0 

w i u (ζi ) , 

where s (x ) := 

∑ k 
i =0 a i ϕ i (x ) , a i ∈ R , satisfies the interpolation condition s (ζi ) = u (ζi ) , i = 0 , . . . , k . The vector w = [ w i ] 

k 
i =0 

can 

be computed by solving the linear system 

��ζ
w = [
ϕ i (ζ )] k i =0 , with ��ζ

:= [ ϕ j (ζi )] k i, j=0 . (4) 

In particular, for the Gaussian , we have 

��ζ
= [ e −ε 2 ‖ ζi −ζ j ‖ 2 ] k i, j=0 , 
ϕ i (ζ ) = 4 ε 2 e −ε 2 ‖ ζ−ζi ‖ 2 (ε 2 ‖ ζ − ζi ‖ 

2 − 1) . (5) 

Assuming that the interpolant s provides a good approximation of the function u , we expect that 
u ( ζ ) ≈ 
s ( ζ ), and thus 

Lu (ζ ) ≈
k ∑ 

i =0 

w i u (ζi ) + c(ζ ) u (ζ ) . 

Therefore, the weights w ζ ,ξ in (2) are chosen as follows: 

w ζ ,ζ = w 0 + c(ζ ) , w ζ ,ζi 
= w i , i = 1 , . . . , k. 

We refer to [5] for the bounds for the numerical differentiation error 
∣∣∣Lu (ζ ) −

∑ 

ξ∈ �ζ

w ζ ,ξ u (ξ ) 

∣∣∣. 

The set of discretization centers � does not have to form a grid or mesh, therefore RBF-FD is a meshless method [9] . 

For more complicated problems it is advantageous to adapt the distribution of the centers to the features of the domain �

and/or to the singularities of the solution u . This can be achieved through adaptive refinement of �. In [3] , we suggested 

a refinement algorithm and an algorithm for stencil support selection, leading to an effective meshless method capable of 

competing with the finite element method on a number of benchmark test problems. However, further experiments have 

shown certain deterioration of the approximation quality after many refinement steps, and suboptimal performance for more 

difficult test problems. 

This motivated the current study, where both stencil support selection and refinement have been improved. The new 

algorithms presented in Sections 2 and 3 deliver the stencil supports �ζ with more evenly distributed points, and the 

adaptively selected sets � that better reflect the singularities of the solution. In the same time the improved method is more 

efficient because a costly post-processing step aimed at reducing the deterioration of the centers in the cause of subsequent 

refinements has been removed. One of the major differences in the refinement algorithm comparing to [3] is an error 

indicator of Zienkiewicz–Zhu type used instead of a simple gradient estimate. This leads to a significant improvement of the 

performance of the adaptive RBF-FD method for more difficult problems. Section 4 is devoted to numerical experiments with 

the test problems considered previously in [3] , several test problems suggested in [8] as benchmarks for testing adaptive 

grid refinement, and a problem on a domain with a circular slit. In this paper we concentrate on the elliptic problems with 

point singularities , such as the reentrant corners of the boundary, sharp peaks and oscillations in the neighborhood of an 

isolated point. Problems with line or curve singularities, boundary layers and wave fronts require further adjustments of the 
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