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a b s t r a c t 

The main intention of the current paper is to describe a scheme for the numerical solu- 

tion of boundary integral equations of the second kind with logarithmic singular kernels. 

These types of integral equations result from boundary value problems of Laplace’s equa- 

tions with linear Robin boundary conditions. The method approximates the solution using 

the radial basis function (RBF) expansion with polynomial precision in the discrete colloca- 

tion method. The collocation method for solving logarithmic boundary integral equations 

encounters more difficulties for computing the singular integrals which cannot be approxi- 

mated by the classical quadrature formulae. To overcome this problem, we utilize the non- 

uniform composite Gauss–Legendre integration rule and employ it to estimate the singular 

logarithm integrals appeared in the method. Since the scheme is based on the use of scat- 

tered points spread on the analyzed domain and does not need any domain elements, we 

can call it as the meshless discrete collocation method. The new algorithm is successful 

and easy to solve various types of boundary integral equations with singular kernels. We 

also provide the error estimate of the proposed method. The efficiency and accuracy of the 

new approach are illustrated by some numerical examples. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Boundary value problems for two-dimensional Laplace’s equations with the linear Robin boundary conditions, i.e. ⎧ ⎨ 

⎩ 

�u (x) = 0 , x ∈ D ⊂ R 

2 , 

∂u (x) 

∂n x 
+ p(x) u (x) = g(x) , x ∈ ∂D, 

(1) 

using Green’s formula can be reduced to second-kind boundary integral equations with logarithmic kernels [11,23] , given in 

the form 

−πu (x) + 

∫ 
∂D 

u (y) 

(
p(y) ln | x − y | + 

∂ ln | x − y | 
∂n y 

)
d s y = 

∫ 
∂D 

g(y) ln | x − y | d s y , x ∈ ∂D, (2) 
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where the region D is open, bounded and simply connected in R 

2 , n x denotes the outward unit normal vector on ∂D , p (x) 

and g (x) are given functions on ∂D with p (x) ≥ 0 but p �≡ 0 and the unknown function u (x) must be determined [11,23] . It 

should be noted that these types of integral equations are also appeared in connection with other types of partial differential 

equations (PDEs) occurred in several branches of sciences such as electromagnetism, solid and fluid mechanics, seismology, 

atomic scattering, wave diffraction, heat transfer, etc [11–13,19,43,48] . 

Solving analytically boundary integral equations, especially in the singular case, is mostly difficult so, it is significant to 

obtain their numerical solutions. The Galerkin and collocation methods [9,11] are the high usage schemes for the approx- 

imate solutions of boundary integral equations which use a family of functions as basis. Authors of [10] have investigated 

the piecewise polynomial collocation method for solving boundary integral equations. Wavelets, as very well localized func- 

tions [1,15,29] , have been used to obtain the numerical solutions of boundary integral equations with logarithmic singular 

kernels in [23,27,45,51] . An iterative quadrature method [50] has been presented for the boundary integral equation de- 

duced as reformulation of some boundary value problems for the two-dimensional Helmholtz equation. A spectral Galerkin 

method [41] has been applied to solve the boundary integral equation which arises from the two-dimensional Dirichlet 

problem. Fourier–Nystrom discretization scheme [31] has been developed for boundary integral equations associated with 

the Helmholtz equation. A meshless discrete Galerkin method [6] has been utilized to solve logarithmic boundary integral 

equations based on the moving least squares (MLS) approximation. 

Meshless methods are based upon the scattered data approximations [17,18] that estimate a function without mesh gen- 

eration on the domain. These methods have gained more attention not only by mathematicians but also in the engineering 

community. Among meshless methods, RBFs have become known as a powerful tool for the scattered data interpolation 

problems. The main advantage of RBFs is that they involve a single independent variable regardless of the dimension of the 

problem [49] . In recent years, the main focus of the applications of meshless methods especially based on the use of the 

RBFs seems to have shifted from scattered data interpolation to the numerical solution of PDEs. One of the domain-type 

meshless methods, the so-called Kansa’s method developed by Kansa in 1990 [34,35] , is obtained by directly collocating the 

RBFs, particularly the multiquadric, for the numerical approximation of the solution. Kansa’s method was recently extended 

to solve various ordinary and partial differential equations [20,32,40,46,47] . 

We would like to review some of the most recent works for the numerical solution of integral equations via the meshless 

approximations. The meshless discrete collocation schemes have been investigated based on the RBFs for solving linear and 

nonlinear integral equations on non-rectangular domains with sufficiently smooth kernels [2,3] and weakly singular kernels 

[7,8] . The RBFs have been applied for the numerical solution of one-dimensional linear Fredholm and Volterra integral equa- 

tions [28] and nonlinear Volterra–Fredholm–Hammerstein integral equations [44] . The meshless product integration (MPI) 

method [5] has been proposed to solve one-dimensional linear weakly singular integral equations. The MLS methodology 

as a local meshless method has been used for solving linear and nonlinear two-dimensional integral equations on non- 

rectangular domains [4,42] and integro-differential equations [21] . The paper [6] has described a computational method for 

solving Fredholm integral equations with logarithmic kernels so-called the meshless discrete Galerkin (MDG) method. Au- 

thors of [37,39] have introduced a MLS-based meshless Galerkin method for boundary integral equations and provided the 

error bound for the method [38] . 

The main purpose of this article is to propose a method for obtaining the numerical solution of the logarithmic singular 

boundary integral equation of the second kind (2) . The method utilizes the extension of RBFs constructed on distributed 

nodal points to approximate the unknown function in the discrete collocation method. The discrete collocation method for 

solving singular integral equations usually needs a special integration rule to approximate its integrals. We will establish 

this quadrature scheme utilizing the composite non-uniform Gauss–Legendre quadrature formula. The scheme reduces the 

solution of the boundary Fredholm integral equation to the solution of a system of linear algebraic equations. The proposed 

scheme is a meshless method, since it requires no domain elements for interpolation or approximation. We also obtain the 

error bound and the rate of convergence for the proposed method. The new technique is simple, efficient, computationally 

attractive and more flexible for most classes of boundary integral equations. 

The outline of the current paper is as follows: In Section 2 , we review some basic formulations and properties of the 

RBFs method. In Section 3 , we present a computational method for solving the boundary integral equation (2) by combining 

the RBF interpolation and the collocation method. In Section 4 , we provide the error analysis for the proposed method. 

Numerical examples are given in Section 5 . Finally, we conclude the article in Section 6 . 

2. Radial basis functions 

RBFs were first developed by Hardy [30] in 1971 as a multidimensional scattered interpolation method in modeling of 

the earth’s gravitational field. It was not recognized by most academic researchers until Franke [26] published a review 

paper in the evaluation of two-dimensional interpolation methods. We introduce RBFs for interpolating functions on D ⊂ R 

d 

for every d . Before that, radial functions are defined as follows [25,49] : 

Definition 2.1. A function � : R 

d → R is called to be radial if there exists a univariate function φ : [0 , ∞ ) → R such that 

�(x ) = φ(r) , (3) 

where r = ‖ x ‖ and ‖ . ‖ is some norm on R 

d , usually the Euclidean norm. 
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