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ARTICLE INFO ABSTRACT
KeyWOTdS-‘ o Starting from the Fisher-Kolmogorov-Petrovskii-Piskunov equation (FKPP) we model the
Fisher—Kolmogorov-Petrovskii-Piskunov dynamic of a diffusive system with two mutually communicating identical patches and

(FKPP) equation

isolated of the remaining matrix. For this system we find the minimal size of each frag-
Fragmented system

Isolated system ment in_ the explicit forrp and compare with the explicit results for similar problems found

Population dynamics in the literature. From this comparison emerges an unexpected result that for a same set of

Explicit solutions the parameters, the isolated system studied in this work with size L, can be better or worst
than the non isolated systems with the same size L, uniquely depending on the parameter
ao (internal conditions of the patches). Due to the fact that this result is unexpected we
propose an experimental verification.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the study of population dynamics, it is used many tools like metapopulations [9,21], diffusive systems [2,7], with one
[20] and more [6] species interacting in many forms [1,5,17,19].

The problem, of a single species moving in a diffusive pattern is largely [4,8,12,15,16] modeled in literature by the equa-
tion of Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP), that in one dimension is given by [3,10,11,18,20]:
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where ® = ®(x,t) is the population density, t is the time, x is the spatial variable, D is the diffusion coefficient, a(x) is the
growth rate and b is a saturation constant (related to the carrying capacity).

The function a(x) is used to describe spatial heterogeneity, where we assume a(x)>0 as a life region, a zone good for
life (patch, island, fragment). If a(x) <0, we assume as a death region, which is unfavorable for life. The profiles described
in Figs.1 and 2 represent examples of fragmented regions.

Using Ludwig arguments [14], reinforced in the literature [10,18], we consider the stead state of FKPP, Eq. (1) and ne-
glected the nonlinear term —®?2, to find the limit conditions between life region and death region. These considerations
generate the equation:
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Fig. 1. Representation of fragmented regions: a: one patch isolated from the matrix; b: one patch non isolated from the matrix; c: two identical patches
immersed in a matrix, separated by a region of length s. In these three cases, the internal conditions of the patches are ag, their lengths are L and the life
difficulty in the matrix is quantified by parameter h, except in the case of isolated systems, where life is impossible in the matrix.

Many profiles of heterogeneity can be interesting to population dynamics because they represent real systems, but if the
function a(x) assumes strange forms, the solution of Eq. (2) can be difficult and unfeasible to find. One simple form of a(x)
interesting to the study of population dynamics is the piecewise constant function. In this case, we assume homogeneous
regions where a(x) > 0 like a patch and regions (homogeneous too) where a(x) <0 like the matrix or the separation between
two neighbor patches such as those in Fig. 1.

In the literature, it is possible to find profiles of a(x) as piecewise constant function used to interpret biological growth
systems. For example, there is the profile for one patch isolated of the matrix, Fig. 1a, which the minimal size patch was
found by Skellam [20] and confirmed by Kenkre and Kuperman [11], satisfying:
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Another example of one patch profile, but non isolated from the matrix, Fig. 1b, was studied by Ludwig [14] who pre-
sented an expression for the minimum size of the fragment, in the form:

Ly =2 /2 arctan /E.
dp do

There are studies for infinite numbers of patches [10,13], but one interesting case that has an explicit form for minimal
island size is the case of two identical fragments immersed in the matrix, Fig. 1c, it was proposed by Kenkre and Kumar
[10] who predicted Eq. (5):

Lgy = 2 arctan E + arctan E tanh { ,/ Ei
dh = do (¢h) dy D2

In this article, we propose two identical patches isolated from the matrix, but mutually communicating, which is the
main propose of this work. This profile is represented in Fig. 2.
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Fig. 2. Representation of an isolated system with two fragments mutually communicating. L is the size of the patches, ay the internal growth rate and p
is the life difficulty level between the patches.
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