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a b s t r a c t 

Direct cell-to-cell transmission of HIV-1 is proved to be a more efficient means of virus 

infection than virus-to-cell transmission. In this paper, we incorporate both virus-to-cell 

and cell-to-cell transmissions into an HIV-1 virus model, which also contains intracellular 

delay and humoral immunity. By analyzing the characteristic equations, the local stability 

of feasible equilibria is established. By using Lyapunov functionals and LaSalle’s invariance 

principle, it is verified that global threshold dynamics of the model can be explicitly de- 

scribed by immune-inactivated reproduction rate and immune-activated reproduction rate. 

Numerical simulations are carried out to illustrate the corresponding theoretical results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Human immunity is consist of humoral immunity and cellular immunity, which are mainly associated by B-lymphocyte 

and T-lymphocyte, respectively. In [1–5] , dynamical behavior of virus models with cellular immunity has been studied more. 

Recently, Virgin and Walker [6] and Roederer et al. [7] revealed that humoral immunity plays an important role in the whole 

human immunity and considered that only by understanding the both two immune responses in unprecedented depth can 

we develop a protective HIV vaccine. Hence, mathematical modeling and analysis of virus dynamics with humoral immunity 

can be helpful to design treatment strategies and to provide insights on evaluating effective antiviral drug therapies. Some 

authors have made their effort s on researching the dynamical behavior of virus models with humoral immunity, for example, 

Wang and Zou [8] and Murase et al. [9] considered an basic HIV-1 virus model with humoral immunity: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = � − dx (t) − βx (t ) v (t ) , 

˙ y (t) = βx (t ) v (t ) − ay (t) , 

˙ v (t) = ky (t) − u v (t) − pv (t ) z(t ) , 

˙ z (t) = cv (t ) z(t ) − bz(t) , 

(1.1) 
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where x ( t ) denotes uninfected cells (susceptible cells) which are produced at rate � and die at rate d , y ( t ) denotes infected 

cells, v (t) denotes virus, and z ( t ) denotes B cells; β is infection rate of virus transmission; a , u and b are death rates of 

infected cells, virus and B cells, respectively; k denotes the number of free virus particles produced by per infected cell. 

pv (t) z(t) and cv (t) z(t) are used to describe the virus killed by B cells and the new B cells produced by antigenic stimulation, 

respectively. 

However, the models above include virus-to-cell transmission only. In fact, cell-to-cell transmission has great influence 

on virus infection, which can not be ignored. In [10] , Sigal et al. proved that cell-to-cell spread is the major route of infection 

as for HIV-1. Some mathematical analysis of virus models with cell-to-cell transmission has been performed. For instance, 

Li and Wang [11] dealt with the global dynamics of an HIV infection model which incorporated direct cell-to-cell transmis- 

sion. Meanwhile, Lai and Zou [12,13] studied the effect of cell-to-cell transfer of HIV-1 on the virus dynamics. Lately, Wang 

et al. [14] have investigated age-structured viral infection models with cell-to-cell transmission and obtained the threshold 

conditions for the global stability of feasible equilibria. 

In addition, model (1.1) did not consider the time between viral entry into a cell and the production of new virus par- 

ticles, which exists in most diseases. In [15] , Elaiw and Alshamrani included the latently infected cells into the model and 

analysed two nonlinear viral infection models with humoral immune response. Besides, Xu [16] discussed an HIV-1 infection 

model with an intracellular delay, carried out a complete mathematical analysis of the model and established its global dy- 

namics. Furthermore, Wang and Hu et al. [17] introduced a general incidence rate f (x (t − τ ) , v (t − τ )) to denote the average 

number of cells which are infected by each virus in unit time. 

Motivated by the works of Wang and Zou [8] , Murase et al. [9] and Lai and Zou [12,13] , in the present paper, we are 

concerned with the effect of both virus-to-cell and cell-to-cell transmissions and intracellular delay on the global dynamics 

of HIV-1 infection model. To this end, we consider the following delay differential equations: 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = � − dx (t) − β1 x (t ) v (t ) − β2 x (t ) y (t ) , 

˙ y (t) = β1 e 
−mτ x (t − τ ) v (t − τ ) + β2 e 

−mτ x (t − τ ) y (t − τ ) − ay (t) , 

˙ v (t) = ky (t) − u v (t) − pv (t ) z(t ) , 

˙ z (t) = cv (t ) z(t ) − bz(t) , 

(1.2) 

where β1 and β2 are infection rates of virus-to-cell transmission and cell-to-cell transmission, respectively; the delay τ
represents the time between viral entry into a cell and the production of new free virus or the time between infected cells 

spreading virus into uninfected cells and the production of new free virus; m is assumed to be a constant death rate for 

infected but not yet virus-producing cells. Thus, the probability of surviving the time period from t − τ to t is e −mτ . All 

parameters are assumed to be positive. 

The initial condition for systems (1.2) take the form 

x (θ ) = φ1 (θ ) , y (θ ) = φ2 (θ ) , v (θ ) = φ3 (θ ) , z(θ ) = φ4 (θ ) , (1.3) 

where it satisfies that 

φi (θ ) ≥ 0 , θ ∈ [ −τ, 0) , φi (0) > 0 , i = 1 , 2 , 3 , 4 , 

where φi ∈ C([ −τ, 0] , R 4 +0 
) , i = 1 , 2 , 3 , 4 , the Banach space of continuous functions mapping the interval [ −τ, 0] into R 4 +0 

, 

where R 4 +0 
= { (x 1 , x 2 , x 3 , x 4 ) : x i ≥ 0 , i = 1 , 2 , 3 , 4 } . 

It can be proved by the fundamental theory of functional differential equations [18] that system (1.2) has a unique 

solution (x (t) , y (t) , v (t) , z(t)) satisfying the initial condition (1.3) . It is easy to show that all solutions of system (1.2) with 

initial condition (1.3) are defined on [0 , + ∞ ) and remain positive for all t ≥ 0. 

This paper is organized as follows. In Section 2 , we verify the existence of feasible equilibria and the boundedness of 

solutions to system (1.2) . In Section 3 , the local asymptotic stability of feasible equilibria is established. In Section 4 , we 

investigate the global asymptotic stability of feasible equilibria. In Section 5 , we present numerical simulations to illustrate 

our results and study the effect of cell-to-cell transmission, viral production rate and viral remove rate on viral dynamics, 

respectively. Besides, we shall perform a sensitivity analysis of immune-inactivated reproduction rate and immune-activated 

reproduction rate, respectively. The conclusions of our paper will be given in Section 6 . 

2. Feasible equilibria and boundedness of solutions 

Clearly, system (1.2) always has an infection-free equilibrium E 0 ( �/ d , 0, 0, 0). Denote 

R 0 = 

( β1 k + β2 u )�

aud 
e −mτ , 

here, R 0 is called immune-inactivated reproduction rate of system (1.2) , which represents the number of newly infected 

cells produced by one infected cell during its lifespan [19] . It is easy to show that if R 0 > 1 , system (1.2) has an immunity- 
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