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ARTICLE INFO ABSTRACT
1<€¥W0Td$f We prove a conjecture of Nadjafi-Arani et al. on the difference between the Szeged and
Wiener index the Wiener index of a graph (Nadjafi-Aranifi et al., 2012). Namely, if G is a 2-connected

Szeged index
Revised Szeged index
Szeged-Wiener relation

non-complete graph on n vertices, then Sz (G) — W(G) > 2n — 6. Furthermore, the equality
is obtained if and only if G is the complete graph K,_; with an extra vertex attached to
either 2 or n — 2 vertices of K,_;. We apply our method to strengthen some known results
on the difference between the Szeged and the Wiener index of bipartite graphs, graphs of
girth at least five, and the difference between the revised Szeged and the Wiener index.
We also propose a stronger version of the aforementioned conjecture.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Graph theoretic invariants of molecular graphs, which predict properties of the corresponding molecules, are known as
topological indices or molecular descriptors. The oldest and most studied topological index is the Wiener index introduced
in 1947 by Wiener [23], who observed that this invariant can be used for predicting the boiling points of paraffins. For a
simple graph G = (V,E), the Wiener index is defined as

W(G) = Y d(ab),

{ablcv

i.e., the sum of distances between all pairs of vertices. After 1947, the same quantity has been studied and referred to by
mathematicians as the gross status [8], the distance of graphs [5], and the transmission [22]. A great deal of knowledge on
the Wiener index is accumulated in research papers, e.g., [1,13,16,21], and surveys, e.g., [14,24], to mention just some recent
ones.

Up to now, over 200 topological indices were introduced as potential molecular descriptors. Already in [23], Wiener in-
troduced a related invariant now called the Wiener polarity index (see e.g., [15,17]), Another molecular descriptor motivated
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by the Wiener index is the Szeged index [6,9]; it was motivated by the original definition of Wiener index for trees. It is
defined as

Sz(G) = ) _ ngy(a) - ngy(b),
abeE
where ng(a) is the number of vertices strictly closer to a than b, and analogously, ng,(b) is the number of vertices strictly
closer to b. Note that ng,(a) and ng,(b) are always positive.
In this paper we consider possible values of the difference

n(G) =Sz (G) —W(G)

between the Szeged and the Wiener index of a graph G. KlavZar et al. [12] proved that the inequality n(G) > 0 holds for
every connected graph G. Moreover, Dobrynin and Gutman [4] showed that the equality is achieved if and only if G is a block
graph, i.e., a graph in which every block (maximal 2-connected subgraph) induces a clique. Nadjafi-Arani et al. [18,19] further
investigated the properties of 7(G) and proved that for every positive integer k, with k{1, 3}, there exists a graph G with
1n(G) = k. Additionally, they classified the graphs G for which 1n(G) € {2, 4, 5} and asked about a general classification;
namely, can we characterize all graphs with a given value of n(G)? They proposed the following conjecture.

Conjecture 1. [19] Let G be a connected graph and let By, ..., B, be all its non-complete blocks of respective orders ny,...,ny.

Then
k

n(G) = ) (2n; - 6).

i=1
In this paper, we prove the following statement which deals with 2-connected graphs.
Theorem 2. If G is a 2-connected non-complete graph on n vertices, then
n(G) > 2n—6.
As a consequence of Theorem 2 we obtain that Conjecture 1 is true.

Corollary 3. Let By, ..., B, be all the non-complete blocks of G with respective orders ny, ..., n,. Then

k
n(G) = Y (2n;—6).

i=1

In fact, we also characterize the graphs achieving equality in Theorem 2. For n,t e N with 1 <t <n—1, let K} be the
graph obtained from K;,_; by adding one new vertex adjacent to t of the n— 1 old vertices. Observe that K! is 2-connected
and non-complete if 2 <t < n — 2. We prove the following stronger version of Theorem 2.

Theorem 4. If G is a 2-connected non-complete graph on n vertices that is not isomorphic to K? or K2, then
n(G) > 2n—>5.

While n(Ky) =0, and n(K?) = n(K?~2) = 2n — 6 (see Lemma 11 for the proof), there seems to be only a finite number of
graphs G with n(G) < 2n; in particular, using a computer, we found such graphs of order at most 9, but none on 10 vertices.
We therefore propose the following conjecture.

Conjecture 5. Let G be a 2-connected graph of order n > 10 not isomorphic to Ky, K2, or K*2. Then
n(G) = 2n.

In Section 2, we derive Corollary 3 from Theorem 2. We present the proofs of Theorems 2 and 4 in Section 4, after
introducing four technical lemmas in Section 3. In Section 5, we apply our method in order to obtain stronger versions of
other results related to the difference between the Szeged and the Wiener index of a graph and, as corollaries, we present
alternative proofs of the existing results. Finally, in Section 6 we use our approach to prove results for the revised Szeged
index.

2. Preliminaries

In the paper, we will use the following definitions and notation. The distance d(a, b) between two vertices a and b is
the length of a shortest path between them. We say that an edge ab is horizontal to a vertex u if d(u,a) = d(u, b). A cycle
of length k is denoted by C,. For a vertex u of G, by N(u) and N[u] we denote the open and the closed neighborhood of u,
respectively; hence N[u] = N(u) U {u}. By extension, we define the open neighborhood N(S) of a set S to be (U, . sN(a))\S.
By N;(u) we denote the set of vertices that are at distance i from u. Hence Ny(u) = {u}, Nj(u) = N(u), etc. The degree of u
in G is denoted by d(u) and we always denote the number of vertices of G by n, i.e.,, n = |V(G)|. A vertex is dominating if it
is adjacent to all other vertices of a graph. A non-edge in a graph G is a pair of non-adjacent vertices. A block is a maximal
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