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a b s t r a c t 

This paper introduces the DS-I-A model with periodic parameter function and Markovian 

switching. First, we will prove that the solution of the system is positive and global. Fur- 

thermore, we draw a conclusion that there exists nontrivial positive periodic solution for 

the stochastic system and we establish sufficient conditions for extinction of system. More- 

over, we construct stochastic Lyapunov functions with regime switching to obtain the exis- 

tence of ergodic stationary distribution of the solution to DS-I-A model perturbed by white 

and telephone noises and we also establish sufficient conditions for extinction of system 

with regime switching. Finally, we test our theory conclusion by simulations. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The mathematical models played an important role in examining the characteristics of infectious diseases since the pio- 

neer work of Kermack and McKendrick [1] . It provides us useful control measures from [2,3] . Famous models of infectious 

disease population dynamics [1,2,4] already exist in literature. A simple homogeneous AIDS model is given by the following 

system of ODEs [5] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS i (t) 

dt 
= μ(S 0 

i 
− S i (t)) − βαi S i (t) I(t) 

N(t) 
, 1 ≤ i ≤ n, 

dI(t) 

dt 
= 

n ∑ 

i =1 

βαi S i (t) I(t) 

N(t) 
− (μ + γ ) I(t) , 

dA (t) 

dt 
= γ I(t) − δA (t) , 

(1.1) 

where N(t) = 

∑ n 
k =1 S k (t) + I(t ) , S i (t )(i = 1 , 2 , . . . , n ) denotes the n individuals susceptible to infection subgroups; I ( t ) the in- 

fected individuals; A ( t ) the AIDS cases; μS 0 
i 
(i = 1 , 2 , . . . , n ) the input flow into the n susceptible subgroups; αi (i = 1 , 2 , . . . , n ) 

the susceptibility of susceptible individuals in subgroup i and 

βI(t) S i (t) 
N(t) 

αi the standard incidence ratio of susceptible sub- 
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groups S i ; μ the natural mortality rate; γ the removal rate coefficient of the infected individuals and δ the sum of natural 

mortality rate and mortality due to illness. 

Since the dynamics of group A has no effect on the disease transmission dynamics, thus we only consider ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

dS i (t) 

dt 
= μ(S 0 

i 
− S i (t)) − βαi S i (t) I(t) 

N(t) 
, 1 ≤ i ≤ n, 

dI(t) 

dt 
= 

n ∑ 

i =1 

βαi S i (t) I(t) 

N(t) 
− (μ + γ ) I(t) . 

(1.2) 

The threshold conditions can be calculated which determine whether an infectious disease will spread in susceptible popu- 

lation when the disease is introduced into the crowed, according to research the disease free equilibrium E 0 (S 0 
1 
, S 0 

2 
, . . . , S 0 n , 0) 

of system (1.2) in [6] . 

And they obtain 

R 0 = 

β
∑ n 

i =1 
αi S 

0 
i 

(μ + γ ) 
∑ n 

i =1 
S 0 i 

, 

where R 0 < 1, E 0 is local asymptotic stabile and disease extinct. When R 0 > 1 then E 0 is unstable and the disease will persis- 

tent existence (see [5] ). The effective contact rate of infected individual in subgroup S i (i = 1 , 2 , . . . , n ) is αi β(i = 1 , 2 , . . . , n ) . 

Thus for initial time (S i = S 0 
i 
) , the average effective contact rate of infected individual in subgroup S i (i = 1 , 2 , . . . , n ) is 

β
∑ n 

i =1 αi S 
0 
i ∑ n 

i =1 S 
0 
i 

. 1 
μ+ γ the average disease period of infected individuals. So R 0 is basic reproductive number. 

It is well recognized fact that real life is full of randomness and stochasticity. Hence, the epidemic models are always 

affected by the environmental noise (in cite [7–14] ). In [15–23] , the stochastic models may be more convenient epidemic 

models in many situations. 

There are different approaches to introduce random perturbations in the model both from biological and mathematical 

perspectives [24,25] . Then corresponding to system (1.2) , one has the following stochastic model ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS i (t) = 

[
μ(S 0 

i 
− S i (t)) − βαi S i (t ) I(t ) 

N(t) 

]
dt + σi S i (t) dB i (t) , 1 ≤ i ≤ n, 

dI(t) = 

[ 

n ∑ 

i =1 

βαi S i (t ) I(t ) 

N(t) 
− (μ + γ ) I(t) 

] 

d t + σn +1 I(t) d B n +1 (t) , 

(1.3) 

where B i (t)(i = 1 , 2 , . . . , n ) are independent standard Brownian motions with B i (0) = 0(i = 1 , 2 , . . . , n ) and σ 2 
i 

> 0(i = 

1 , 2 , . . . , n ) denote the intensities of the white noise. Other parameters are the same as in system (1.2) . 

On the other hand, many infectious of humans fluctuate over time and often show seasonal patterns of incidence. Taking 

account of periodic variation in epidemic models and studying the existence of periodic solutions are important and inter- 

esting to predict and control the spread of infectious diseases. Many results on the periodic solution of epidemic models 

have been reported [26–28] by using Has’minskii theory of periodic solutions and constructing suitable Lyapunov functions. 

Motivated by above facts, in this paper, we will first consider the following stochastic DS-I-A model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS i (t) = 

[
μ(t )(S 0 

i 
(t ) − S i (t)) − β(t ) αi (t ) S i (t ) I(t ) 

N(t) 

]
dt + σi (t) S i (t) dB i (t) , 1 ≤ i ≤ n, 

dI(t) = 

[ 

n ∑ 

i =1 

β(t ) αi (t ) S i (t ) I(t ) 

N(t) 
− (μ(t) + γ (t )) I(t ) 

] 

dt + σn +1 (t ) I(t ) dB n +1 (t ) , 

(1.4) 

in which the parameter functions μ, S 0 
i 
, σi , β, αi , γ , i = 1 , 2 , . . . , n, are positive, non-constant and continuous functions of 

period T . 

Besides white noise, epidemic models may be disturbed by telephone noise which makes population systems switch from 

one regime to another. Let us now take a further step by considering another type of environmental noise, namely, color 

noise, say telegraph noise (see Refs. [29,30] ). The telegraph noise can be illustrated as a switching between two or more 

regimes of environment, which differ by factors such as nutrition or as rain falls [31–34] . The switching is memoryless and 

the waiting time for the next switch has an exponential distribution. Therefore, we also consider the following stochastic 
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