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a b s t r a c t 

The modeling of the corona effect has many technological applications especially in the 

power industry. The reduction of the computational burden of three dimensional simu- 

lations is a key factor in this area. Stability requirements may impose unacceptable con- 

straints in three dimensions leading to huge computational costs. In this paper we develop 

an effective time-splitting method that remains stable and positive even when relatively 

large time steps and coarse meshes are used. We analyze the theoretical properties of the 

method and validate our approach against already published experimental data. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper we develop an effective three dimensional implicit scheme for the solution of the corona phenomenon 

[1] . The simulation of the inception of electric discharges is a very important topic with applications to many technological 

fields such as the treatment of surfaces [2,3] , the diminution of air pollutants [4] , the production of chemically active species 

[5] and the analysis of partial discharges [6] . 

The three-dimensional simulation of the corona effect and of the streamers is usually linked to huge computational costs, 

therefore this challenge has been tackled in a few cases such as [7,8] . In many other works some major simplifications have 

been adopted, for instance, one of the crudest approximations are the 1.5d models. These have been employed in [9] to 

simulate the corona effect and in [10] to estimate the streamer propagation. Another very popular approximation is the 

two dimensional axis-symmetric one. It has been used to predict the first phases of the streamer propagation [11,12] and to 

model the Trichel phenomenon on needles [13–15] . There are also a few cases of planar two dimensional streamer simula- 

tions [16,17] mainly devoted to the study of the instabilities of ionization fronts. 

The computational burden associated to a full three dimensional modeling is further exacerbated by the fact that, in 

many cases, the stability requirements may request a strict mesh spacing and small time steps. In [18] it has been demon- 

strated that the coupling between the electrostatic equation and the movement of charges may cause some numerical insta- 

bilities even when relatively small time steps are used. The methods that implement a stable coupling between these two 

physical models are called asymptotic preserving methods, see [19–21] . 
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Moreover in [22] it has been shown that a large class of finite volume methods may be unstable when they are used to 

simulate the avalanche phenomenon. The electron avalanche constitutes an important part of the streamer-corona model. If 

no stabilization technique is used, the stability of that class of methods is linked to the mesh spacing. The methods that are 

stable whatever mesh spacing is used are called, through this paper, avalanche-stable. 

Some other stability issues may include the Courant Friedrichs Lewy (CFL) condition [23] or the instability related to 

convection dominated drift-diffusion problems [24] . 

In this work we aim to develop a method whose numerical burden is not strictly constrained by stability issues. A huge 

number of numerical methods have been proposed to solve the corona or the streamer model, many of them are based on 

explicit finite volume techniques [25,26] and, therefore, they are constrained by the CFL condition. Also some higher order 

Discontinuous Galerkin methods [27] show very similar constraints. The commercial codes, like the one used in [13] , usually 

implement full time-implicit techniques. As it has been shown in a number of works [18–20] implicit and semi-implicit time 

stepping schemes are usually asymptotic preserving. However, commercial codes are in almost all cases not designed to be 

avalanche-stable and must implement a strong mesh refinement to gain stability. Among the avalanche stable methods we 

mention the characteristics method [28] and the particle in a cell (PIC) method [8] . Unfortunately, to the best of the authors’ 

knowledge, no asymptotic preserving PIC methods have been proposed so far. 

Here we propose an implicit evolution of the explicit finite volume asymptotic preserving techniques proposed in 

[18] embedding the stabilization techniques developed in [22] for the avalanche phenomena. The implicit scheme we are 

going to introduce is no longer subjected to the CFL. This is a critical feature for the simulation of the Trichel corona effect 

since the time step should be adapted to cope with the fast variations of the discharges and the almost flat variations of 

the inter-discharge periods. The satisfaction of the CFL condition would impose unacceptable time step constraints between 

one discharge and the other. The stability requirements we have listed are crucial when long simulation runs are performed. 

To the best of our knowledge, no numerical method, currently available, embeds all these characteristics. In this work we 

develop a method that has the properties we are looking for and we analyze it: in particular we concentrate on the stability 

issues and on the positivity of the method. 

Let us now review the structure of this paper. In Section 2.1 we introduce the corona model and its discretization. 

The numerical properties of the method are analyzed in Section 3 and in Section 4 we discuss the implementation of the 

algorithm. Finally, in Section 6 , we compare the results with some data found in the literature. 

2. The model and its discretization 

2.1. The model 

Let � ⊂ R 

3 be an open domain with Lipschitz boundary ∂�, let � n be the outward pointing unit vector on the boundary 

and let [0, T ] be a time interval where T is the final time. The spatial coordinate vector is denoted with 

�
 x ∈ � and the time 

variable with t ∈ [0, T ]. We consider the standard corona problem [13,29] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 
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(1) 

where n e (t, � x ) is the concentration of the electrons, n p (t, � x ) is the concentration of the positive ions, n n (t, � x ) is the 

concentration of the negative ions, � E (t, � x ) is the electric field, φ(t, � x ) is the electric potential, with 

�
 x ∈ � and t ∈ [0, T ]. e is 

the electron charge, ε0 is the vacuum permittivity, μe , μp , μn , are, respectively, the mobilities of the electrons, positive and 

negative ions, α(| � E | ) , η(| � E | ) , β are, respectively, the ionization, attachment, and recombination coefficients and d e is the 

diffusion coefficient. The mobilities and the reaction coefficients can be provided by the swarm parameter databases such 

as in [1,30,31] . We point out that the mobilities and the reaction coefficients are all positive. 

System (1) must be complemented by a set of initial and boundary conditions. For these latter therefore we define: 

∂�P 
I (t) = 

{
�
 x ∈ ∂� : � E (t, � x ) · �

 n ( � x ) < 0 

}
, ∂�P 

O (t) = 
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�
 x ∈ ∂� : � E (t, � x ) · �

 n ( � x ) ≥ 0 

}
, 

∂�N 
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}
, ∂�N 

O (t) = 

{
�
 x ∈ ∂� : � E (t, � x ) · �

 n ( � x ) ≤ 0 

}
, 

(2) 

and we set the following boundary conditions: 

n e (t, � x ) = n e,b ( t, � x ) , � x ∈ ∂�, n n (t, � x ) = n n,b ( t, � x ) , � x ∈ ∂�N 
I ( t ) , n p (t, � x ) = n p,b ( t, � x ) , � x ∈ ∂�P 

I ( t ) , (3) 

where n e , b , n p , b and n n , b are, respectively, the positive boundary electron, positive and negative ion concentration func- 

tions. We include the secondary electron emission phenomenon and we compute the boundary electron concentration 

as n e,b ( t, � x ) = γ
μp ( t, � x ) 
μe ( t, � x ) 

n p,b ( t, � x ) where γ is the secondary emission coefficient. The boundary conditions associated to the 
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