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a b s t r a c t 

This paper is devoted to stability analysis of continuous-time delay systems with interval 

time-varying delays having known bounds on the delay derivatives. A parameterized fam- 

ily of Lyapunov–Krasovskii functionals involving multiple integral terms is introduced, and 

novel multiple integral inequalities are utilized to derive sufficient stability condition for 

systems with time-varying delays. The efficiency of the proposed method is illustrated by 

numerical examples. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

It is well-known that time-delays are frequently present in various physical, industrial and engineering systems. The 

delays may cause poor performance or even instability of systems, therefore much attention has been devoted to obtain 

tractable stability criteria for systems with time delay during the past few decades (see e.g., the monographs [1,2] , some 

recent papers [3–27] and the references therein). 

Let us consider the following system with time-varying delay: 

˙ x (t) = Ax (t) + A d x (t − τ (t)) , (1) 

x (t) = ϕ(t) , t ∈ [ −τ , 0] , 

where x (t) ∈ R 

n x is the state, and A, A d ∈ R 

n x ×n x are given matrices, the time-varying delay τ is supposed to be a differen- 

tiable function satisfying conditions 

0 ≤ τ ≤ τ (t) ≤ τ , μ ≤ ˙ τ (t) ≤ μ, τ < τ (2) 

with known bounds τ , τ , μ, μ, and function ϕ gives the initial condition. 

Several approaches have been elaborated and successfully applied for the stability analysis of time delay systems (see the 

references above for excellent overviews). A major issue in this respect is to develop delay-dependent stability conditions, 

which provide as wide delay bounding interval guaranteeing stability as possible. Many important results on asymptotic 

stability of time-delay systems have been established using the Lyapunov–Krasovskii functional (LKF) approach. 

In order to enhance the effectiveness, more and more involved Lyapunov–Krasovskii functionals have been introduced 

during the past decades involving single/multiple integral terms with respect to quadratic functions. On the other hand, 

much effort has been devoted to derive more and more tight inequalities (Jensen’s inequality and different forms of 
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Wirtinger’s inequality [1,2,4,5,22,28] , etc.) for the estimation of single, double and multiple quadratic integral terms in the 

derivative of the LKF. Lately, the so-called Bessel–Legendre inequality has been developed in [12] to deal with single integral 

terms of quadratic functions, and a wide range of multiple integral inequalities has been derived in [9–11] . Very recently, 

general integral inequalities that encompass all the above-mentioned inequalities are parallel presented in [16,17] based on 

orthogonal polynomials in different Euclidean spaces with integral inner products. 

Utilizing these results, sufficient stability conditions for linear time delay systems partly with constant, partly with time 

varying delays are derived in the form of linear matrix inequalities (LMIs). We note that a great part of recent works inves- 

tigates time-delay systems with bounded delays (i.e., when τ = 0 ) and with different conditions on the delay derivative. 

The aim of the present work is to investigate the stability problem of linear systems with interval time-varying delays (i.e., 

when τ > 0) having known bounds of the delay derivative via the application of the inequalities proposed in [17] . 

It has to be emphasized that the time-variance of the delay causes some new problems compared to the case of constant 

delay: (1) new terms and different augmented variables have to be considered in the LKF for efficiency; (2) the presence of 

time-varying delays implies the non-convexity of the obtained matrix inequalities with respect to the length of the intervals, 

which necessitates special handling. 

The contribution of the paper can be summarized as follows: 

1. A parameterized family of LKFs is introduced involving multiple integral terms and augmented state variables that are 

chosen in accordance with the applied estimations. The possible choice of the parameters gives great flexibility to find a 

compromise between the computational complexity and the reduction of conservatism. 

2. Relaxed sufficient LMI stability conditions for systems with interval time-varying and bounded time-varying delays are 

derived. 

3. The derivation is based on the multiple integral inequalities published in [17] . 

4. It will be shown that the proposed condition yields less conservative results with substantially less number of decision 

variables than several others known from the literature. 

The paper is organized as follows. Some preliminary results will be recalled in Section 2 . The main result will be derived 

in Section 3 , which starts by introducing a new Lyapunov–Krasovskii functional in Section 3.1 . Next, the analysis problem 

will be investigated in Section 3.2 . In Section 4 , some numerical examples illustrate the effectiveness of the results. Finally, 

the conclusion will be drawn. 

Standard notations are used. As usual, P > 0 ( ≥ 0) denotes the positive (semi-)definiteness of P . Symbols S n ( S n + ) denote 

the set of symmetric (and positive definite) matrices of size n × n . For any A ∈ R 

n ×n , symbol He( A ) is defined as He (A ) = 

A + A 

T . For the sake of brevity, asterisks replace the blocks in hypermatrices that are inferred readily by symmetry. If n = 0 

and/or m = 0 , then vector x ∈ R 

n and matrix C ∈ R 

n ×m are considered to be empty. The Euclidean vector norm in R 

n is ‖·‖ . 
We also denote x t (θ ) = x (t + θ ) , ˙ x t (θ ) = ˙ x (t + θ ) , (θ ∈ [ −τ , 0]) . 

2. Preliminaries 

This paper aims to derive sufficient stability conditions in LMI form based on some multiple integral inequalities recently 

published in [17] . For convenience of the readers, we evoke these estimations in the following lemmas. 

Lemma 1 [17] . Let W ∈ S 
n + , let E be a Euclidean space with the scalar product 〈 .,. 〉 , and let πi ∈ E , (i = 0 , 1 , . . . ) form an or- 

thogonal system. If ν ≥ 0 is a given integer, then for any f ∈ E 

n , the following inequality holds 

J W 

( f ) = 〈 f, W f 〉 ≥
ν∑ 

j=0 

1 ∥∥π j 

∥∥2 
w 

T 
j W w j , 

where w j = 〈 f, π j 〉 , and the scalar product is taken componentwise. 

Lemma 1 can be specified for the following case. Let E = L 2 [ a, b] with a scalar product defined by 

〈 g 1 , g 2 〉 �, [ a,b] = 

∫ b 

a 

(
s − a 

b − a 

)� 

g 1 (s ) g 2 (s ) ds, g 1 , g 2 ∈ L 2 [ a, b] , (3) 

where � ≥ 0 is a given integer. It is well-known that this scalar product can also be written as 

〈 g 1 , g 2 〉 �, [ a,b] = 

� ! 

(b − a ) � 

∫ b 

a 

∫ b 

v 1 
. . . 

∫ b 

v � 
g 1 (s ) g 2 (s ) d sd v � . . . d v 1 . 

We shall consider the set of polynomials p � , n of degree n = 0 , 1 , 2 , . . . , orthogonal with respect to the scalar product (3) sat- 

isfying relations 

‖ 

p �,n ‖ 

2 
�, [ a,b] = 

b − a 

� + 2 n + 1 

, p �,n (a ) = (−1) n 
� + n 

n 

, p �,n (b) = 1 . 

(Further properties are given in [17] .) In particular, we shall use the notation P � , n , if [ a, b] = [0 , 1] . Making calculations, it 

may be useful to express the polynomials P � , n , for n = 0 , 1 , . . . , K in terms of { 1 , x, , . . . , x K } . To this end, matrix G (�, K) ∈ 
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