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Griinwald-Letnikov and the fractional centered difference formulae to approximate the
nonlocal fractional operators, we design a class of linearized finite difference schemes for
the presented nonlocal model. The existence, stability and convergence of the proposed
numerical schemes are rigorously derived with the help of functional analysis. Theoretical
analysis shows that the proposed numerical schemes are stable with second order accu-
racy. Numerical examples are presented to verify our theoretical analysis and to demon-
strate the efficiency of the proposed numerical schemes.
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1. Introduction

Benjamin-Bona-Mahony (BBM) equation describes the uni-directional propagation of surface water waves with small
amplitudes and long wavelengths in nonlinear dispersive media [5]. It is well-known as a regularized counterpart of the
Korteweg-de Vries equation and is extensively studied in the recent literature, see for example [5,6] and references therein.
The nonlocal viscous term will arise in the BBM equation when the weak effects of dispersion and dissipation effects are
considered for uni-directional wave propagation [6,20,25,29]. It usual appears in the following damped BBM equation [6,7]

Up + Uy — LUk + UV uy = MSu, xe(a,b), te(0,T], (1)

where u = u(x, t) is the horizontal velocity of the fluid, y is a positive integer, « and 8 are non-negative parameters dedi-
cated to the balance of viscosity and dispersion, M¢ is the nonlocal fractional operator

Mu(x, t) = k1 Du(x, t) + k2 xDjux, t), 1<a <2, (2)
with (Df and Dy are left and right Rieman-Liouville fractional derivatives of order «, respectively, defined by
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The parameters k1 and x5 in Eq. (2) are non-negative constants which balance the effects of dispersion.

Many works have been proposed for the well-posedness and regularity of solutions for the nonlocal partial differential
equations, see [1,2,13-15,19]. The effect of the viscous layer is modeled by a nonlocal term that acts as dissipation and dis-
persion, as revealed by the linear dispersion analysis [6,7,9]. These models are generalizations of the well-known BBM equa-
tion, in which the viscosity is not considered. In the past decade, many numerical methods for the linear space fractional
partial differential equations have been extensively developed, see [8,12,18,21,23,24,27,28,30,32,34,38]. However, numerical
methods for nonlinear fractional equations such as are far from being abundant. In the literature, based on the interacting
particles approximation, Biler et al. [4] develop a numerical method for the solution of a large class of evolution problems
involving the fractional Laplacian. Ervin et al. [17] developed a fully finite element approximation to solve a time dependent
fractional nonlinear diffusion equation. Droniou [15] developed a class of finite difference schemes for a fractional Burgers
equation. He proved that the numerical solutions converge towards to Alibaud’s entropy solution. Cifani et al. [11] first de-
veloped a discontinuous Galerkin method for a fractional conservation law. Xu and Hesthaven [35] proposed a Runge-Kutta
local discontinuous Galerkin method for a fractional conservation law, and they proved and stability and error estimations
for the considered model. More recently, Chen et al. [10] discussed the time decay behavior of BBM equation with time and
space nonlocal viscous terms by a Fourier spectral approximation [9,10,16]. Combining a linearized finite difference scheme
for the time discretization and Fourier spectral method for the spatial discretization, Zhang and Xu in their recently work
[39] constructed and analyzed two linearized schemes for the numerical solution of a time fractional water wave equation
in BBM form.

Our interest in the present paper is to design efficient numerical schemes for the fractional BBM equation . Section 2 is
devoted to discuss the linearized difference schemes for the fractional BBM equation. Section 3 contains numerical results
for the considered equation, which demonstrate the accuracy and effectiveness of the proposed method. At last, we close by
providing some concluding remarks in Section 4.

2. Second-order linearized difference schemes

We consider the difference schemes for Eq. in finite domain (x, t) € [a, b] x [0, T]. The computational domain [a, b] x [0,
T] is divided into an | x N mesh with the spatial step size h = (b—a)/J and the time step size T = T/N, respectively, where
J and N are integers. Grid points (x;, tn) are defined by x; =a+ jh,0 < j <J;tn =nt,0 <n < N. Denote u? be the finite

1
difference approximation of u(x, t) at grid point (x;, tn), ie. u? ~ u(xj, tn) and u?” = (u? +u]’?+1)/2. Denote the function

space Wy, = {(v}), 19 =0,1,=0,0 < j <]J}. Suppose that u" = {u;FIO <j<J} and V" = {vz?|0 < j<]J} are two grid functions,
we introduce the following notations
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In the following, we will propose a second order finite difference scheme for the dBBM equation subject to the initial value

u(x,0) =uo(x), xe(ab), (7)
and boundary conditions
u(a, t) =0,u(b,t)=0, te(0,T]. (8)

In practical application, many different definitions of fractional derivatives are introduced [27,31]. The Griinwald-Letnikov
derivative is more suitable to approximate the Riemann-Liouville derivative. However, the difference scheme based on the
Griinwald-Letnikov formula for space fractional diffusion is unstable. To obtain a stable difference scheme, Meerschaert and
Tadjeran [23] firstly introduced the shifted Griinwald-Letnikov approximation formula with only the first order accuracy. To
improve the accuracy, Tian et al. [33] introduced the weighted and shifted Griinwald-Letnikov difference (WSGLD) operators
for the Riemann-Liouville derivatives. For function u(x) € C%[a, b] and all derivatives of u up to order four belong to L;(a, b),
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