
Applied Mathematics and Computation 311 (2017) 240–250 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Linearized difference schemes for a BBM equation with a 

fractional nonlocal viscous term 

Can Li 

Department of Applied Mathematics, School of Sciences, Xi’an University of Technology, Xi’an, Shaanxi 710054, PR China 

a r t i c l e i n f o 

Keywords: 

Fractional BBM equation 

Finite difference methods 

Stability 

Convergence 

a b s t r a c t 

This paper is concerned with the efficient finite difference schemes for a Benjamin–Bona–

Mahony equation with a fractional nonlocal viscous term. By using the weighted-shift 

Grünwald–Letnikov and the fractional centered difference formulae to approximate the 

nonlocal fractional operators, we design a class of linearized finite difference schemes for 

the presented nonlocal model. The existence, stability and convergence of the proposed 

numerical schemes are rigorously derived with the help of functional analysis. Theoretical 

analysis shows that the proposed numerical schemes are stable with second order accu- 

racy. Numerical examples are presented to verify our theoretical analysis and to demon- 

strate the efficiency of the proposed numerical schemes. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Benjamin–Bona–Mahony (BBM) equation describes the uni-directional propagation of surface water waves with small 

amplitudes and long wavelengths in nonlinear dispersive media [5] . It is well-known as a regularized counterpart of the 

Korteweg-de Vries equation and is extensively studied in the recent literature, see for example [5,6] and references therein. 

The nonlocal viscous term will arise in the BBM equation when the weak effects of dispersion and dissipation effects are 

considered for uni-directional wave propagation [6,20,25,29] . It usual appears in the following damped BBM equation [6,7] 

u t + u x − μu txx + βu 

γ u x = M 

α
x u, x ∈ (a, b) , t ∈ (0 , T ] , (1) 

where u = u (x, t) is the horizontal velocity of the fluid, γ is a positive integer, μ and β are non-negative parameters dedi- 

cated to the balance of viscosity and dispersion, M 

α
x is the nonlocal fractional operator 

M 

α
x u (x, t) = κ1 a D 

α
x u (x, t) + κ2 x D 

α
b u (x, t) , 1 < α < 2 , (2) 

with a D 

α
x and x D 

α
b 

are left and right Rieman–Liouville fractional derivatives of order α, respectively, defined by 

a D 

α
x u (x, t) = 

1 

�(2 − α) 

∂ 2 

∂x 2 

∫ x 

a 

( x − ξ ) 1 −αu (ξ , t) dξ , (3) 

and 

x D 

α
b u (x, t) = 

1 

�(2 − α) 

∂ 2 

∂x 2 

∫ b 

x 

( ξ − x ) 1 −αu ( ξ , t) dξ . (4) 
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The parameters κ1 and κ2 in Eq. (2) are non-negative constants which balance the effects of dispersion. 

Many works have been proposed for the well-posedness and regularity of solutions for the nonlocal partial differential 

equations, see [1,2,13–15,19] . The effect of the viscous layer is modeled by a nonlocal term that acts as dissipation and dis- 

persion, as revealed by the linear dispersion analysis [6,7,9] . These models are generalizations of the well-known BBM equa- 

tion, in which the viscosity is not considered. In the past decade, many numerical methods for the linear space fractional 

partial differential equations have been extensively developed, see [8,12,18,21,23,24,27,28,30,32,34,38] . However, numerical 

methods for nonlinear fractional equations such as are far from being abundant. In the literature, based on the interacting 

particles approximation, Biler et al. [4] develop a numerical method for the solution of a large class of evolution problems 

involving the fractional Laplacian. Ervin et al. [17] developed a fully finite element approximation to solve a time dependent 

fractional nonlinear diffusion equation. Droniou [15] developed a class of finite difference schemes for a fractional Burgers 

equation. He proved that the numerical solutions converge towards to Alibaud’s entropy solution. Cifani et al. [11] first de- 

veloped a discontinuous Galerkin method for a fractional conservation law. Xu and Hesthaven [35] proposed a Runge–Kutta 

local discontinuous Galerkin method for a fractional conservation law, and they proved and stability and error estimations 

for the considered model. More recently, Chen et al. [10] discussed the time decay behavior of BBM equation with time and 

space nonlocal viscous terms by a Fourier spectral approximation [9,10,16] . Combining a linearized finite difference scheme 

for the time discretization and Fourier spectral method for the spatial discretization, Zhang and Xu in their recently work 

[39] constructed and analyzed two linearized schemes for the numerical solution of a time fractional water wave equation 

in BBM form. 

Our interest in the present paper is to design efficient numerical schemes for the fractional BBM equation . Section 2 is 

devoted to discuss the linearized difference schemes for the fractional BBM equation. Section 3 contains numerical results 

for the considered equation, which demonstrate the accuracy and effectiveness of the proposed method. At last, we close by 

providing some concluding remarks in Section 4 . 

2. Second-order linearized difference schemes 

We consider the difference schemes for Eq. in finite domain ( x , t ) ∈ [ a , b ] × [0, T ]. The computational domain [ a , b ] × [0, 

T ] is divided into an J × N mesh with the spatial step size h = (b − a ) /J and the time step size τ = T /N, respectively, where 

J and N are integers. Grid points ( x j , t n ) are defined by x j = a + jh, 0 ≤ j ≤ J; t n = nτ, 0 ≤ n ≤ N. Denote u n 
j 

be the finite 

difference approximation of u ( x , t ) at grid point ( x j , t n ), i.e. u n 
j 
≈ u (x j , t n ) and u 

n + 1 
2 

j 
= (u n 

j 
+ u n +1 

j 
) / 2 . Denote the function 

space W h = { (v j ) , v 0 = 0 , v J = 0 , 0 ≤ j ≤ J} . Suppose that u n = { u n 
j 
| 0 ≤ j ≤ J} and v n = { v n 

j 
| 0 ≤ j ≤ J} are two grid functions, 

we introduce the following notations 

D t u 

n 
j = 

u 

n +1 
j 

− u 

n 
j 

τ
, D + u 

n 
j = 

u 

n 
j+1 

− u 

n 
j 

h 

, D −u 

n 
j = 

u 

n 
j 
− u 

n 
j−1 

h 

, 

D 0 u 

n 
j = 

u 

n 
j+1 

− u 

n 
j−1 

2 h 

, D 

2 u 

n 
j = D + D −u 

n 
j = 

u 

n 
j+1 

− 2 u 

n 
j 
+ u 

n 
j−1 

h 

2 
, 

(u 

n , v n ) h = 

J−1 ∑ 

j=0 

hu 

n 
j v 

n 
j , || u 

n || h = 

√ 

(u 

n , u 

n ) , || u 

n || ∞ 

= max 
0 ≤ j≤J−1 

| u 

n 
j | , (5) 

| u 

n | 2 1 ,h = 

J−1 ∑ 

j=0 

h (D + u 

n 
j ) 

2 , || u 

n || 2 1 ,h = || u 

n || 2 h + | u 

n | 2 1 ,h . (6) 

In the following, we will propose a second order finite difference scheme for the dBBM equation subject to the initial value 

u (x, 0) = u 0 (x ) , x ∈ (a, b) , (7) 

and boundary conditions 

u (a, t) = 0 , u (b, t) = 0 , t ∈ (0 , T ] . (8) 

In practical application, many different definitions of fractional derivatives are introduced [27,31] . The Grünwald–Letnikov 

derivative is more suitable to approximate the Riemann–Liouville derivative. However, the difference scheme based on the 

Grünwald–Letnikov formula for space fractional diffusion is unstable. To obtain a stable difference scheme, Meerschaert and 

Tadjeran [23] firstly introduced the shifted Grünwald–Letnikov approximation formula with only the first order accuracy. To 

improve the accuracy, Tian et al. [33] introduced the weighted and shifted Grünwald–Letnikov difference (WSGLD) operators 

for the Riemann–Liouville derivatives. For function u ( x ) ∈ C 4 [ a , b ] and all derivatives of u up to order four belong to L 1 ( a , b ), 
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