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a b s t r a c t 

A nonlinear monotone finite volume scheme on general non-conforming meshes for dif- 

fusion equations is introduced, which deals with discontinuous tensor coefficients rigor- 

ously. Since the expression of normal flux depends on auxiliary unknowns defined at cell- 

vertex including hanging nodes, we propose a new method to eliminate vertex-unknown 

by using primary unknowns at the centers of the cells sharing the vertex. Especially the 

unknowns defined on hanging nodes are eliminated by flux continuous conditions. The re- 

sulting scheme is monotone and preserves positivity of analytical solutions for strongly 

anisotropic and heterogeneous full tensor coefficient problems. Numerical results show 

that the convergent order of the monotone scheme by different methods of eliminating 

vertex unknowns will vary remarkably, and our new method can assure that it has almost 

second order accuracy and more accurate than some existing methods. 

© 2017 Published by Elsevier Inc. 

1. Introduction 

Consider the stationary diffusion problem for unknown u = u (x ) : {−∇ · (κ∇u ) = f in �, 

u (x ) = g on ∂�, 
(1) 

where � is an open bounded polygonal set of R 2 with boundary ∂�, and κ is diffusion tensor (possibly anisotropic and 

discontinuous). 

For Lagrangian radiation hydrodynamic problems with high temperature and high pressure, large relative displacement is 

easy to appear near multi-material interface, which is named as sliding interface [23] . It follows that general non-conforming 

meshes (see Fig. 1 ) occur naturally since computational mesh moves with fluid flow. For multi-fluid Eulerian radiation hy- 

drodynamic problems, adaptive mesh refinement (AMR) technique is popular [11,22] , which results in the appearance of 

hanging nodes, and is used to increase resolution and reduce computational cost especially in the cases of physical quantities 

being with large gradients or discontinuities. Therefore, accurate and efficient discrete schemes on general non-conforming 

meshes are necessary for numerically solving these radiation hydrodynamic problems. 
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Fig. 1. Non-conforming mesh. 

In [7] an improved cell-centered conservative scheme on orthogonal AMR meshes is presented to remove interface lead- 

ing errors and ensure flux continuity. In [14] a mimetic finite difference (MFD) method on non-orthogonal locally refined 

quadrilateral meshes is proposed, and it is extended in [12] to polygonal, locally refined and non-matching meshes, and 

then a similar mimetic discretization on unstructured polyhedral meshes is given in [15] . A post-processing method for 

mimetic finite difference method of diffusion equations is presented in [3] on quite general meshes with non-convex and 

non-matching cells, and the post-processed solution is proved to be second order accurate under very general conditions. 

In [6] a mixed finite volume scheme for anisotropic diffusion equations on unstructured irregular (convex) meshes is con- 

structed, which introduces three sets of unknowns, i.e., cell-centered unknowns u and discrete gradient ∇u in each cell, 

and discrete normal flux on each interior edge of cell. In [8] SHUSHI scheme on general meshes (including non-conforming 

grids) is actually derived from a discrete weak formulation, so it is a kind of non-conforming finite element method with 

cell-centered unknowns and some cell-edge unknowns to deal with diffusion tensor discontinuities. In [18] a second or- 

der cell-centered finite volume scheme for convection-diffusion equations on unstructured and non-conforming (convex) 

meshes is proposed, which uses SHUSHI scheme for diffusive fluxes with diffusion coefficients being a non-negative con- 

stant. In [4] a cell-centered finite volume scheme named as diamond scheme on general non-conforming meshes is pre- 

sented, where a diamond stencil is used in deriving flux expression, and vertex unknowns are accurately approximated by a 

new weighted interpolation with weights being adaptive to both geometric parameters of cells and diffusion coefficients. In 

[9] a cell-centered scheme for the approximation of Laplace operator on non-conforming meshes is introduced for incom- 

pressible Navier–Stokes equations, which can be viewed as a low order non-conforming Galerkin approximation. 

All schemes mentioned above are not monotone or cannot preserve positivity on general meshes. It is well known that 

classical finite volume (FV) and finite element (FE) schemes violate monotonicity for strong anisotropic diffusion tensors and 

on distorted meshes [5,10,17] . In order to assure the monotonicity, some restriction conditions on both meshes and diffusion 

coefficients must be imposed, e.g., in [13] for MFD methods a set of constraint inequalities for the elements of the mass 

matrix of every mesh element is given. For a scheme without preserving monotonicity, it is easy to generate non-physical 

numerical solutions, especially on distorted meshes, such as negative temperature for thermal conduction problem. In or- 

der to avoid such numerical oscillation, monotonicity is regarded as an indispensable requirement in constructing discrete 

schemes. 

In order to guarantee monotonicity without any severe condition, some nonlinear schemes [16,19,24] have been proposed. 

A nonlinear monotone FV scheme for highly anisotropic diffusion operators on unstructured triangular meshes has been 

proposed in [19] for parabolic equations with sufficiently small time steps. A nonlinear FV scheme for elliptic problems on 

triangular meshes has been proposed in [16] , where a special choice of collocation points (i.e., cell centers) is introduced to 

prove the scheme being monotone on triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients, 

but for general polygonal meshes some restrictions on diffusion tensor coefficients and meshes are also needed. A further 

developed monotone scheme for strongly anisotropic and heterogeneous tensor coefficients on star-shaped polygonal meshes 

has been proposed in [24] , where it is unnecessary to choose a specific collocation points. To our knowledge, all of these 

existing monotone schemes are designed on conforming meshes. 

In solving the radiation hydrodynamic problems arising from some applications such as inertial confinement fusion and 

nuclear reactor, it is important to guarantee that the direction of heat propagation is correct, i.e., heat should flow from 

higher temperature to lower temperature on distorted and possibly non-conforming meshes. Then it is essentially neces- 

sary to construct monotone diffusion scheme on general non-conforming meshes, which is just the aim of this paper. The 

nonlinear monotone scheme in [24] will be extended to non-conforming meshes, moreover a new method will be proposed 

to eliminate auxiliary vertex unknowns, in particular those defined at hanging nodes. This new method treats material dis- 

continuities rigorously, and is adapted to almost arbitrary mesh geometry. The resulting finite volume scheme satisfies the 

following desirable properties: 

• It is a cell-centered conservative scheme. 

• It is monotone on almost arbitrary meshes including non-conforming cells. 
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