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This paper is concerned with the stability for delayed neural networks. By more fully mak- 

ing use of the information of the activation function, a new Lyapunov–Krasovskii functional 

(LKF) is constructed. Then a new integral inequality is developed, and more information of 

the activation function is taken into account when the derivative of the LKF is estimated. 

By Lyapunov stability theory, a new stability result is obtained. Finally, three examples are 

given to illustrate the stability result is less conservative than some recently reported ones. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In the past decades, neural network (NN) has been successfully applied in signal processing, pattern recognition, associa- 

tive memory, optimization problem, and other engineering and scientific areas [1,2] . However, during the implementation of 

artificial NNs, the finite switching speed of amplifiers and the inherent communication time between the neurons inevitably 

introduce time delay, which might cause oscillation, divergence, and even instability. Therefore, the stability of the neural 

networks with a time-varying delay (DNNs) has attracted a large number of researchers, and some stability criteria have 

been reported in the literature. The stability criteria developed for DNNs can be divided into delay-independent ones and 

delay-dependent ones. Compared to the former, the delay-dependent stability criteria, which include the information of time 

delay, usually have less conservative, especially when applied to DNNs with small delay. Thus, more attentions have been 

paid to delay-dependent stability analysis and its main goal is to reduce the conservatism of the derived stability condition. 

In terms of the Lyapunov stability theory, the conservatism of the derived stability condition is related to the choosing 

of the LKF and dealing with its derivative. Constructing a generalized LKF is an effective way to reduce conservatism of 

the stability results obtained, and various types of LKF have been reported. In [3] , an augmented LKF was constructed by 

introducing the information of the delayed state and integral terms of the state and activation function. In [4,5] , LKFs were 

constructed based on multiple integrals, with triple integrals in [4] , and quadruple integrals in [5] respectively. By decom- 

posing delay interval into segments, delay-partitioning based LKFs were constructed in [6,7] while an activation function 

based LKF was constructed in [8] . To deal with the derivative of LKF, firstly introducing slack variables is an important way 

to take more information of neural networks and derive less conservative stability results [9–11] . Secondly advanced bound- 

ing techniques are necessary when estimating the derivative of LKF. In order to derive tighter upper bound of the derivative 

of LKF, numerous inequalities have been proposed. The Jensen inequality was employed in [12,13] , and the Wirtinger-based 

inequality was used in [14] . Thirdly, to check the negative definite of the derivative of LKF, some methods were needed. 
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The convex combination technique, for example, was adopted in [15–17] , where the convex polyhedron method was used 

in [16] and the quadratic convex combination technique was employed in [17] . 

Recently stability results for neural networks have been reported in the literature. In [18] , asymptotic stability criterion 

was obtained using a LKF including a triple integral, where the Wirtinger-based inequality was employed to estimate the 

derivative of the LKF. In [19] , by defining a more general LKF, a delay-dependent stability result was formulated in linear 

matrix inequality, while a combined convex approach to stability for DNN was studied in [20] . Very recently stability analysis 

was conducted in [21] and a new stability result was derived, where the tradeoff between conservatism and complexity was 

considered. We can see each of those papers has its characteristics, in terms of the LKF or the estimating approach for the 

derivative of the LKF. However, there is still room for those papers to improve. 

In this paper, attention is focused on revisiting the stability analysis problem for general DNNs. A new LKF with more 

fully making use of the information of the activation function is defined. When estimating the derivative of the LKF, a new 

integral inequality and more information of the activation function are introduced. Based on Lyapunov stability theory, a 

new delay-dependent stability criterion is formulated in terms of linear matrix inequality. Examples are listed to illustrate 

the reduced conservatism of the stability result. 

Notations: Throughout this paper R 

n denotes the n -dimensional Euclidean space, and R 

n ×m is the set of all n × m real 

matrices; the superscript ’ T ’ and ’ −1 ’ stand for the transpose and inverse of a matrix, respectively; ’ I ’ and ’0’ represent 

the identity and null matrices with appropriate dimensions, respectively; the notation | · | denotes the absolute value; the 

notation diag { ���} stands for a block-diagonal matrix; the notation P > 0( ≥ 0) means that P is a real symmetric and positive- 

definite (semipositive-definite) matrix. Moreover, for any square matrix A , we define Sym { A } = A + A 

T , and the symmetric 

term in the matrix is denoted by ∗. 

2. Problem formulation 

Consider the general DNN with a time-varying delay τ ( t ) [21,22] : 

˙ u ( t ) = −Au ( t ) + W 0 g ( W u ( t ) ) + W 1 g ( W u ( t − τ ( t ) ) ) + J (1) 

where u ( t ) = [ u 1 ( t ) , u 2 ( t ) , . . . , u n ( t ) ] 
T 

is the state vector associated with the n neurons; g ( ·) = [ g 1 ( ·) , g 2 ( ·) , . . . , g n ( ·) ] T rep- 

resents the neuron activation function with g ( 0 ) = 0 ; A = diag { a 1 , a 2 , . . . , a n } > 0 ; W , W 0 and W 1 are the connection weight 

matrices; J = [ J 1 , J 2 , . . . , J n ] 
T 

is a vector representing the bias; and τ ( t ) is a time-varying delay satisfying 

0 ≤ τ ( t ) ≤ h, ˙ τ ( t ) ≤ μ (2) 

The following assumption is made throughout this paper. 

Assumption 1. The neuron activation function is bounded, and satisfies 

l −
i 

≤ g i ( s 1 ) − g i ( s 2 ) 

s 1 − s 2 
≤ l + 

i 
, s 1 � = s 2 , i = 1 , 2 , . . . , n 

where l −
i 

and l + 
i 

are known real constants. 

Based on Assumption 1 , there exists an equilibrium point u ∗ for (1) , i.e., 

0 = −A u 

∗ + W 0 g ( W u 

∗) + W 1 g ( W u 

∗) + J 

To transfer the equilibrium u ∗ to the origin, we make the transformation x ( t ) = u ( t ) − u ∗ to neural network (1) . Then, it 

becomes 

˙ x ( t ) = −Ax ( t ) + W 0 f ( W x ( t ) ) + W 1 f ( W x ( t − τ ( t ) ) ) (3) 

where x ( t ) = [ x 1 ( t ) , x 2 ( t ) , · · · , x n ( t ) ] 
T 

is the state vector of the transformed system (3) , f ( ·) = [ f 1 ( ·) , f 2 ( ·) , . . . , f n ( ·) ] T and 

f i 
(
W̄ i x ( t ) 

)
= g i 

(
W̄ i x ( t ) + W̄ i u 

∗) − g i 
(
W̄ i u 

∗) with f i ( 0 ) = 0 and W̄ i denoting the i th row vector of the matrix W . It is noted 

that 

l −
i 

≤ f i ( s 1 ) − f i ( s 2 ) 

s 1 − s 2 
≤ l + 

i 
, s 1 � = s 2 (4) 

which implies 

l −
i 

≤ f i ( s ) 

s 
≤ l + 

i 
, s � = 0 

This paper aims to derive a delay-dependent stability criterion of DNN (3) with (2) and (4) to determine the admissible 

upper bound of τ ( t ), which can guarantee the stability of the DNN. To the end, we need the following lemmas: 

Lemma 1 (Jensen’s Inequality [23] ) . For any matrix R ∈ R 

n ×n , R = R T > 0 , scalars α < β , and vector x : [ α, β] → R 

n , such that 

the integration concerned is well defined, then 

( β − α) 

∫ β

α
x T ( s ) Rx ( s ) ds ≥

∫ β

α
x T ( s ) ds R 

∫ β

α
x ( s ) ds 
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