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ARTICLE INFO ABSTRACT
MSsC: We consider linear algebraic equations, where the elements of the matrix and of the
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right-hand side vector are linear functions of interval parameters, and their parametric

15A06 AE-solution sets, which are defined by applying universal and existential quantifiers to the
Keywords: interval parameters. Usually, interval methods find numerical interval vector that contains
Linear equations an AE-solution set.

Dependent interval parameters In this work we propose a method that generates an outer estimate of a parametric
AE-501UtiC_m set AE-solution set in form of a linear parametric interval function, called parameterized outer
Outer estimation solution (p-solution). Parameterized outer solution is proposed for the parametric united

solution set in Kolev (2014) and takes precedence over the classical interval solution enclo-
sure when the latter is part of other problems involving the same parameters. The method
we present generalizes the method from Kolev (2016) for parametric AE-solution sets. It is
also a parameterized analogue of a method from Popova and Hladik (2013) and produces
the same interval enclosure as the method from the last reference.
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1. Introduction

Denote by R"™ and R™ " the set of real vectors with n components and the set of real m x n matrices, respectively.
Vectors are considered as one-column matrices. A real compact interval is a=[a,d] :={aeR | a <a <a}. By IR", IR™*"
we denote the sets of interval n-vectors and interval m x n matrices, respectively. We consider systems of linear algebraic
equations having linear uncertainty structure

A(p)x = a(p), pep,

K K (1)
A(p) :=Ao+ ) P, a(p) =00+ ) Pl
k=1 k=1
where A, e R™" aq, e R*, k=0,...,K, and the parameters p = (py,..., px)' are considered to be uncertain and varying
within given intervals p = (p1,....px) .

We consider parametric AE-solution sets of system (1), which are defined by

2P = Zae(A(p), b(p). p) @)
i={xeR"| (Vpa e p)(3ps € pe) (A(p)x = b(p))},
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where A and € are sets of indexes such that AUE ={1,...,K}, ANE =¢. For a given index set IT = {mq, ..., 7}, pp de-
notes (px,,..., px, ). Particular index sets A, £ are associated to each particular AE-solution set. Some of the most studied
and with more practical interest AE-solution sets are: the (parametric) united solution set

o = Zuni(A(p). b(p). p) := {x e R" | (3p € P)(A(p)x = b(p))}.

the (parametric) tolerable solution set

Yap(A(pa). b(pe).p) :={x e R" | (Vpu € P0)(Ape € Pe) (A(p)Xx = b(pe))}

and the (parametric) controllable solution set

Yap(A(pe). b(pa).P) :={x € R" | (Vpu € P0)(Aps € Pe) (A(pe)x = b(pa))}.

For interpretation and applications of AE-solution sets see, e.g., [1].

Usually, when finding outer interval enclosure of a solution set, interval methods generate a numerical interval vector
that contains the particular AE-solution set. For inner estimation of parametric AE-solution sets see, e.g., [2]. A new type of
enclosure, called parameterized or p-solution, providing outer estimate of the parametric united solution set is proposed in
[3]. The proposed p-solution is in form of a linear parametric interval function

x(pD=Lp+1, pep, lel,
where L is a real n x K matrix and 1 is an n-dimensional interval vector. The parameterized solution has the property

Zpi <X,

um —

where x(p, 1) is the interval hull of x(p, ) over p € p, | € 1. For a nonempty and bounded set X c R", its interval hull is
defined by

OF :=({xeIR"| £ cx}.

Some iterative methods for determining x(p, I) of the parametric united solution set are proposed in [3,4]. In order to im-
prove their computational efficiency, a direct method for determining the p-solution x(p, ) is proposed in [5]. A numerical
example demonstrates in [4] that the parameterized solution is rather promising in solving some global optimization prob-
lems where the parametric linear system (1) is involved as an equality constraint.

In this work we generalize the direct method, developed in [5] for the parametric united solution set, to arbitrary para-
metric AE-solution sets and propose a method that generates an outer solution enclosure in a form, which is not an interval
vector but a linear parametric interval function x(p, I). The structure of the paper is as follows. Section 2 contains nota-
tion and basic facts about the arithmetic on proper and improper intervals [6], which will be used to simplify the proof of
Theorem 6 in Section 3, as well as various known results that are used as a background for the derivation of the parame-
terized AE-solution. The parameterized AE-solution and its interval enclosure property are proven in Section 3. A numerical
algorithm implementing the parameterized AE-method is presented in Section 4 along with some numerical examples. The
paper ends by some conclusions.

2. Preliminaries

For a = [a, a], define the mid-point & := (a +a)/2, the radius d := (a—a)/2 and the absolute value (magnitude) |a| :=
max{|a|, |al}. These functions are applied to interval vectors and matrices componentwise. Inequalities are understood com-
ponentwise. The spectral radius of a matrix A € R™" is denoted by o(A). The identity matrix of appropriate dimension is
denoted by I.

In order to simplify the presentation, in Section 3 we use the arithmetic on proper and improper intervals [6], called
Kaucher complete arithmetic, and its properties; see also [7]. The set of proper intervals IR is extended in [6] by the set
IR := {[a;, az] | a1, a; € R, a; > ay} of improper intervals obtaining thus the set IR (JIR = {[ay, ay] | a1, ay € R} of all ordered
couples of real numbers, called also generalized intervals. The conventional interval arithmetic operations, lattice operations
intersection (N) and union (U ), order relations, and other interval functions are isomorphically embedded into the whole
set TR|YTR [6].

An element-to-element symmetry between proper and improper intervals is expressed by the “dual” operator, dual(a) :=
[ay, aq] for a =[ay, ay] € IR|JIR. The operator dual is applied componentwise to vectors and matrices. For a, b e IR JTR

dual(dual(@a)) =a, dual(aob) =dual(a) odual(b), o e {+, -, x, /},
acb < dual(a) o dual(b). (3)

The generalized interval arithmetic structure possesses group properties with respect to addition and multiplication opera-
tions. For a,b e TRUTR, 0 ¢ b

a—dual(a) =0, b/dual(b) = 1. (4)
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