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ARTICLE INFO ABSTRACT

MsC: We give fully explicit upper and lower bounds for the constants in two known inequal-

76D05 ities related to the quadratic nonlinearity of the incompressible (Euler or) Navier-Stokes

421253]2 equations on the torus T¢. These inequalities are “tame” generalizations (in the sense of
Nash-Moser) of the ones analyzed in the previous works (Morosi and Pizzocchero (2013)
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Inequalities

Sobolev spaces

1. Introduction

Let us consider the homogeneous incompressible Navier-Stokes (NS) equations on a torus y - (R/2mZ)? of arbitrary
dimension; the nonlinear part of these equations is governed by the bilinear map & sending two sufficiently regular vector
fields v, w : T¢ - R? into

2, w) =LV ow) . (11)

In the above v- 9w : T¢ — RY is the vector field of components (v - dw)s := Zfﬂ vroyws and £ is the Leray projection onto
the space of divergence free vector fields (see Section 2 for more details). Of course the NS equations read

au )

T VAu-— 2(u,u) + f, (1.2)
where: u = u(x, t) is the divergence free velocity field, depending on x € T¢ and on time t; v > 0 is the kinematic viscos-
ity, A is the Laplacian of T¢; f = f(x,t) is the (Leray projected) external force per unit mass. In the inviscid case v =0,
(1.2) become the Euler equations.

In this paper, we focus the attention on certain inequalities fulfilled by 22 in the framework of Sobolev spaces. For
any real n, we denote with HY,; the Sobolev space formed by the (distributional) vector fields v on T¢ with vanishing

divergence and mean, such that v=A"v is in L?; this carries the inner product (v|w)p = («/—Anle/—Anw)Lz and the
norm |[v||n :=+/(v|v)n (see the forthcoming Eqs. (2.8) and (2.9)). Let p, n be real numbers; it is known that

n>d/2, veHy, weHy' = 2 w) el (1.3)
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and that there are positive real constants Ky, Gn, Kpn, Gpn such that:

2@ W)la <KallVlallWln  for,n>d/2,veHyy,weHE!, (1.4)
{2, w)|W)a| < Gullvllallwlz  for,n>d/2+1,veHL), weHE' . (1.5)
2@ w)llp < %Kpn(”U”p”W”nH +vllalwlipe)  for.p>n>d/2.veHd weHE . (1.6)
{2 w)|w),| < %Gpn(llv||p||W||n+ vllalwlp)wll,  for.p>n>d/2+1,veHl, weHE (1.7)

Statements (1.3) and (1.4) indicate that &» maps continuously HY., x IHI';B] to HY,, if n > df2. Eq. (1.6) with p =n implies
Eq. (1.4), with Ky := Kyp; similarly, (1.7) with p = n gives (1.5) with G, := Gnn.

Eq. (1.4) is closely related to the basic norm inequalities about multiplication in Sobolev spaces, and (1.5) is due to Kato
[5]; for these reasons, in [11,12] inequalities (1.4) and (1.5) are referred to, respectively, as the “basic” and “Kato” inequalities
for 21, Eqs. (1.6) and (1.7) are tame refinements of (1.4) and (1.5) (in the general sense given to tameness in studies on
the NashMoser implicit function theorem [4]). We remark that inequalities very similar to (1.7) are used by Temam in [16],
Beale-Kato-Majda in [1] and Robinson-Sadowski-Silva in the recent work [15].

From here to the end of the paper we intend that Ky, Gn, Kpn, Gpn are, respectively, the sharp constants in (1.4), (1.5),
(1.6), and (1.7) (i.e., the minimum constants fulfilling these inequalities). In the previous papers [11,12], explicit upper and
lower bounds were provided for K, and Gj. In the present work, we generalize the cited results deriving upper and lower
bounds for Kp, and Gy, for all real p, n as in Egs. (1.6) and (1.7). Our derivations of the upper bounds also give, as byprod-
ucts, simple and self-consistent proofs of the related inequalities; the proposed approach follows ideas from Temam [16] and
Constantin-Foias [3], making them more quantitative. The lower bounds are obtained substituting suitable trial vector fields
in Egs. (1.6) and (1.7).

The relevance of a quantitative information on the constants Kpn, Gpn is pointed out, e.g., in [14]. In the cited work, in-
equalities (1.4) - (1.7) and the constants therein are used to give bounds on the exact C* solution of the NS Cauchy problem
with smooth initial data (including the Euler case v = 0) via the a posteriori analysis of an approximate solution; these es-
timates concern the interval of existence of the exact solution and its Sobolev distance of any order from the approximate
solution. Paper [14] uses systematically the known fact that the space of C* vector fields on T¢ with vanishing divergence
and mean coincides with mpekH%o; the tame structure of inequality (1.7) is essential for an efficient implementation of the
a posteriori analysis since, after fixing a basic order n > d/2 + 1, it induces simple estimates in terms of the Sobolev norms
of arbitrary order p > n. The setting of [14] is in fact a C* variant of the framework introduced in [10] (and inspired by
Chernyshenko et al. [2]), where the exact and approximate NS solutions live in a Sobolev space of a given finite order, and
the a posteriori analysis is based only on inequalities (1.4) and (1.5). For some applications of the general schemes of [10,14],
in addition to these papers we wish to mention [7,8,13].

Organization and main results of the paper. The present paper has an extended arXiv version [9], giving additional details
on the most technical aspects of our estimates. Section 2 of the present work reviews some basic notations and presents a
number of elementary facts about the bilinear map #2. The subsequent Sections 3 and 4 present our upper bounds K;;n, G;;n
for the sharp constants (1.6) and (1.7), respectively; these are described by Theorems 3.3, 4.4 and have the form

1 1
Kl =——" [ sup Ky(k), Gl =———= | sup Gpm(k) (1.8)
Q)2 kezajo) o P Q)2 ey

where Kpn, Gpn : 29\ {0} — [0, +-00) are explicitly given, bounded functions. For each k, Kpn (k) and Gpn (k) are infinite (zeta-
type) sums over the lattice Z¢ or, to be precise, on Z9\{0, k}: see Eqs. (3.2), (3.9), (4.3), and (4.11). Sections 3 and 4 also
propose some elementary upper bounds on the sups in Eq. (1.8); these imply upper bounds Klf,;), Géf,;) for Kpn and Gpn, much
rougher than K}, and Gj,.

In Section 5, we sketch a procedure, suitable for computer implementation, to approximate accurately from above the
functions Kpn, Gpn and their sups; this procedure is described in full detail in the arXiv version [9]. The basic idea is to
approximate the infinite sums Kpn(k), Gpn(k) with finite sums over the integer points of suitable balls, giving accurate re-
minder estimates; in the same spirit, the sups of Ky, and Gpn over Z4 are approximated with sups over the integer points
of a ball, giving again error estimates. This construction finally produces precise upper approximants I(;:,’), G;;) for K;{n, G;n.
In [9], after developing the theoretical basis of the above approximation technique we describe its actual implementation in

1 Due to a remark of [11], we could write inequality (1.5) and its extension (1.7) using, in place of 22(v,w) = £(v-w), the vector field (with non
zero divergence) v- dw. The cited reference considers the Sobolev space Hj of vector fields v on T¢ with vanishing mean and V=A"v in I2, with the
inner product (V|w), = (V=A"v|v=A");; for any n > dJ2 and v e HL,. we HE!' one has v-dw e Hi, 22 (v, w) € HL; and (22 (v, w)|w), = (V- dw|w)y.
However, these considerations will play no role in the present paper.
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