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a b s t r a c t 

The goal of this paper is to study a quasistatic frictionless contact problem for a viscoelas- 

tic body in which the constitutive equation is modeled with the fractional Kelvin–Voigt 

law and the contact condition is described by the Clarke subdifferential of a nonconvex 

and nonsmooth functional. The variational formulation of this problem is provided in the 

form of a fractional hemivariational inequality. In order to solve this inequality, we apply 

the Rothe method and prove that the associated abstract Volterra inclusion has at least 

one solution. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Fractional calculus, which is a natural generalization of traditional integer-order calculus into arbitrary order, has been of 

great interest recently. This is due to the intensive development of applications of fractional calculus to many physical and 

engineering fields such as solid and fluid mechanics, electrochemistry, control systems and dynamical systems, etc., one may 

refer to [2,7,15,16,19,20,27,31] . In the field of material science, in the last few years, fractional calculus has been frequently 

applied to describe the constitutive laws for viscoelastic materials, see, e.g., [7,15,20] . The reason is that, compared with 

the traditional integer-order derivative, the definition of the fractional derivative includes the integration of a function, i.e., 

the fractional derivative of the function at some time depends not only on the current time, but also on the history of the 

process. This fact is consistent with the rheological behavior of viscoelastic materials, cf. [8] . For the specific viscoelastic 

materials which meet the fractional constitutive models, we refer to [10,25,28,30] . 

Contact mechanics has many applications in industry and our daily lives, such as locomotive wheel-rail contact, brak- 

ing systems, bearings, gasket seals, combustion engines, mechanical linkages, ultrasonic welding, metalworking, and so on. 

Because of the attractiveness of these processes, modeling, mathematical analysis and numerical simulations of various con- 

tact processes become particularly popular. As a result, a general mathematical theory of contact mechanics is currently 

emerging. It provides a sound, clear and rigorous mathematical background to the corresponding contact model, prov- 

ing existence, uniqueness, regularity results, etc. Many mathematical tools are employed in the theory, such as nonlinear 
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inclusions, variational inequalities and hemivariational inequalities, etc. We also would like to mention that the notion of 

hemivariational inequality was introduced by Panagiotopoulos in the 1980s as a generalization of variational inequality. It 

plays an important role in describing many mechanical problems arising in solid mechanics. For motivations, mathematical 

results on hemivariational inequalities and their applications to mechanics, we refer to [11–13,22–24,26] and the references 

therein. 

Although the theory of fractional viscoelasticity and contact mechanics has been considerable developed in the past few 

years, and delivered numerous papers and monographs, as far as we know, there are no papers and monographs focused on 

contact problems for the viscoelastic solid materials with fractional viscoelastic constitutive laws. Motivated by the above, 

the aim of this paper is to study the existence of the weak solutions for a viscoelastic frictionless contact problem with the 

fractional Kelvin–Voigt constitutive law. The novelty of this work consists in the fact that we consider the viscoelastic mate- 

rials with the fractional Kelvin–Voigt constitutive law and the contact boundary is modeled with the Clarke subdifferential 

of a nonconvex and nonsmooth function. In a consequence, our new contact model leads to the study of a new class of 

fractional hemivariational inequalities, which are associated with an abstract Volterra inclusion. 

The paper is structured as follows. We use the Rothe method to study the existence of solutions for an abstract Volterra 

inclusion with the Clarke subdifferential in Section 2 . In Section 3 , in order to facilitate the reader, we provide a detailed 

analysis of the rheological behavior for the fractional Maxwell model and the fractional Kelvin–Voigt model, respectively. In 

Section 4 , we present a new mathematical model with the fractional Kelvin–Voigt constitutive law and derive its variational 

formulation which has the form of a fractional hemivariational inequality for the displacement field. The weak solvability 

of this hemivariational inequality is obtained by using the abstract results of Section 2 . Finally, in Appendix we recall some 

necessary definitions and results which are useful in the proof of the main result. 

2. Solvability of an abstract Volterra inclusion with the Clarke subdifferential 

Let V and X be two separable and reflexive Banach spaces, and (0, T ) be a finite time interval of interest. We denote by 

M a linear, bounded, and compact operator from V into X , and by M 

∗: X 

∗ → V 

∗ its adjoint. 

Given u 0 ∈ V and k i ∈ L ∞ (0, T ), k i ( t ) > 0 for a.e. t ∈ (0, T ), i = 1 , 2, we consider the convolution (Volterra) operator K i : 

L 2 (0, T ; V ) → C (0, T ; V ) defined by 

(K i v )(t) = u 0 + 

∫ t 

0 

k i (t − s ) v (s ) ds for v ∈ L 2 (0 , T ;V ) , 

for all t ∈ (0, T ), i = 1 , 2. 

The main problem under consideration in this section is formulated as follows. 

Problem 2.1. Find v ∈ L 2 (0 , T ;V ) such that 

A v (t) + B 

(
(K 1 v )(t) 

)
+ M 

∗∂ J 
(
M(K 2 v )(t ) 

)
� f (t ) for a.e. t ∈ (0 , T ) , (1) 

where A , B : V → V 

∗ are single-valued operators, J : X → R is a functional, ∂ J stands for its Clarke subdifferential and f ∈ L 2 (0, 

T ; V 

∗). 

We recall that a function v ∈ L 2 (0 , T ;V ) is called a solution to Problem 2.1 if and only if there exists ζ ∈ L 2 (0, T ; X 

∗) such 

that 

A v (t) + B 

(
(K 1 v )(t) 

)
+ M 

∗ζ (t) = f (t) for a.e. t ∈ (0 , T ) 

with 

ζ (t) ∈ ∂ J 
(
M(K 2 v )(t) 

)
for a.e. t ∈ (0 , T ) . 

Remark 2.2. Let us introduce the operators A , B : L 2 (0 , T ;V ) → L 2 (0 , T ;V ∗) and M : L 2 (0 , T ;V ) → L 2 (0 , T ; X ) defined by 

(A v )(t) = A v (t) , (Bv )(t) = B 

(
(K 1 v )(t) 

)
, (M v )(t) = M(v (t)) (2) 

for v ∈ L 2 (0 , T ;V ) and a.e. t ∈ (0, T ). The operators A and M are the Nemytski (superposition) operators corresponding to A 

and M , respectively. With these notation, it can be observed that the function v ∈ L 2 (0 , T ;V ) is a solution of Problem 2.1 if 

and only if there exists ζ ∈ L 2 (0, T ; X 

∗) such that 

A v + Bv + M 

∗ζ = f 

with ζ (t) ∈ ∂ J 
(
M(K 2 v )(t) 

)
for a.e. t ∈ (0, T ). 

In order to derive a result on existence of solution to Problem 2.1 , we introduce the hypotheses on the operators A , B : V 

→ V 

∗ and the functional J : X → R . 

H ( A ) : The operator A : V → V 

∗ satisfies 

(a) A ∈ L (V, V ∗) and monotone, 
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