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ARTICLE INFO ABSTRACT
MsC: A dimensional splitting iteration method is proposed for solving the saddle point prob-
ggi‘;g lems arising from the finite element discretization of the hybrid formulation of the time-

harmonic eddy current models, which is by making use of the special positive semidefinite

6550 splittings of the saddle point matrix. It is proved that the proposed iteration method is un-
Keywords: conditionally convergent for both cases of simple topology and general topology. Numerical
Time-harmonic eddy current problem results show that the corresponding preconditioner is superior to the existing precondi-
Saddle point problem tioners, when those preconditioners are used to accelerate the convergence rate of Krylov
Splitting iteration method subspace methods.
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Numerical test

1. Introduction

To simulate the electromagnetic phenomena concerning alternating currents at low frequencies, it often uses the time-
harmonic eddy current model. The hybrid formulation of the complete eddy current model proposed and analyzed in [1],
can be precisely described as the following system of equations

curl (0 'curl Ho) + iwpHe = curl (07 'Jec) in o,

curl (1 'curl E)) = —iw],, in

div(eE;)) =0 in

uwlcurl E;xn=0 on 0%, (1.1)
€E;-n=0 on 0%,

He xn = (—iowp) lcurl E; x n on T,

E; xn=o0"1(curl Hc —Joc) xn on TI.

For the sake of simplicity, the computational domain € c R3 is assumed to be a simply connected Lipschitz polyhedron.
Suppose the conducting region Q2 strictly contained in  and its complement ; := Q \ Q¢. We shall assume that Q¢ and
€2; are Lipschitz polyhedrons and that €2 is connected but not necessarily simply connected. The magnetic permeability
is assumed to be a uniformly positive definite 3 x 3 tensor with entries in L>°(£2), whereas the electric conductivity o is
supposed to be a positive definite tensor in the conducting regions, and to be null in non-conducting regions. The dielectric
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permittivity € is also assumed to be a uniformly positive definite symmetric tensor. The real scalar constant w # 0 is a
given angular frequency. In addition, the symbol i denotes the imaginary unit, i.e., i = +/—1, dQ2 denotes the boundary of
the domain Q, I' := Q- N Q;, nj;q and nyr represent the unit outward normal vectors on €2 and on I' pointing toward €2y,
respectively. Without causing confusion, we use n to simply represent nj3o and njr. Here, E, H and J. are the electric field,
the magnetic field and a given generator current, respectively. For a given vector field v defined in €2, we denote by v, the
restriction to Q;, L=C, L

The hybrid formulation (1.1) uses as main unknowns the magnetic field in the conductor and the electric field in the
insulator. It is a convenient approach for complicated geometrical configurations where the conductor Q¢ is not simply
connected, as unrelated or nonmatching meshes on 2¢ and €2; are possibly allowed to be used in its finite element approx-
imation. See [1-4] for more details.

By using the finite element method to discretize the hybrid formulation (1.1) (see [1,2]), we can obtain the following
linear system

SC + IMC DT Bg 0 Iic FC
D iss o B||E|_[a
B o o ollo|=|o] (1.2)
0 BB 0 O o 0

where 5c € R"1*" and S; € R"™2*"2 are symmetric positive semidefinite matrices, Mc € R"1*™ is a symmetric positive definite
matriX, Bc € R™>™ and B; € R™M2*™ have full row ranks and D € R™*™ is a real matrix. Let E; be a suitable magnetic vector
potential such that H; = —(iowu) 'curl EI and ¢, ¢, be two Lagrange multipliers. The complex valued unknown vectors Hc,
E, Q and @, are the coefficients of the finite element approximations to Hc, E;, ¢ and ¢, in the chosen bases of certain
finite element subspaces, respectively. The complex valued right-hand side vectors Fc and G; are obtained by applying the
functionals f- and g; to the elements of the bases of certain finite element subspaces, with f- and g; being defined through
proper integrals with respect to o ~'J,c and J, ;, respectively. For more details about these complex valued unknown and
right-hand side vectors, we refer to [1,3].

The first Betti number of €2; is a topological invariant measuring the number of nonbounding cohomologically indepen-
dent cycles in €; (see, e.g., [5-7]), and its value plays an important role in the solution of the saddle point problem (1.2).
When the first Betti number of €2, is equal to zero, the saddle point problem (1.2) is referred to as simple topology; when
the first Betti number of €; is greater than zero, the saddle point problem (1.2) is referred to as general topology; see [3].

(1) The case of simple topology

From the point of algebra, the first Betti number of €2, is equal to zero if and only if the matrix

iS, BT
A= I 13
| <B[ 0 ) ( )

is nonsingular. In addition, since the matrix S; is symmetric positive semidefinite, we can easily show that 4; is nonsingular
if and only if the following two conditions hold

(i) null(S;) Nnull(B;) = {0};

(i) null(B]) = {0}.

Here, we denote by null( - ) the kernel space of the corresponding matrix. Note that these two conditions readily imply
that S; + rB,TBI is symmetric positive definite for any constant T > 0. When the matrix S; is symmetric positive definite, we
may set T = 0; otherwise, we may let T > 0. 5

By pre-multiplying —i on both sides of the saddle point problem (1.2), utilizing the equation B;E; =0, and using the
zero patterns in the coefficient matrix as well as the right-hand side vector, we can equivalently transform (1.2) into the
following linear system

Ay —iD" Bl 0\ [ Hc —ik
_|-ip A o B\ E |_[|-ia|._
ac=Te0 T o al Se = ot = (14)
0 -B 0 0)\-i® 0

where
AL =Mc—iSc, Ay =S5+ 'L'B}-B].

That is

(4 -0+
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