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a b s t r a c t 

A dimensional splitting iteration method is proposed for solving the saddle point prob- 

lems arising from the finite element discretization of the hybrid formulation of the time- 

harmonic eddy current models, which is by making use of the special positive semidefinite 

splittings of the saddle point matrix. It is proved that the proposed iteration method is un- 

conditionally convergent for both cases of simple topology and general topology. Numerical 

results show that the corresponding preconditioner is superior to the existing precondi- 

tioners, when those preconditioners are used to accelerate the convergence rate of Krylov 

subspace methods. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

To simulate the electromagnetic phenomena concerning alternating currents at low frequencies, it often uses the time- 

harmonic eddy current model. The hybrid formulation of the complete eddy current model proposed and analyzed in [1] , 

can be precisely described as the following system of equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

curl (σ−1 curl H C ) + i ωμH C = curl (σ−1 J e,C ) in �C , 

curl (μ−1 curl E I ) = −i ωJ e,I in �I , 

div (εE I ) = 0 in �I , 

μ−1 curl E I × n = 0 on ∂�, 

εE I · n = 0 on ∂�, 

H C × n = (−i ωμ) −1 curl E I × n on �, 

E I × n = σ−1 ( curl H C − J e,C ) × n on �. 

(1.1) 

For the sake of simplicity, the computational domain � ⊂ R 

3 is assumed to be a simply connected Lipschitz polyhedron. 

Suppose the conducting region �C strictly contained in � and its complement �I := � \ �C . We shall assume that �C and 

�I are Lipschitz polyhedrons and that �C is connected but not necessarily simply connected. The magnetic permeability μ
is assumed to be a uniformly positive definite 3 × 3 tensor with entries in L 

∞ (�) , whereas the electric conductivity σ is 

supposed to be a positive definite tensor in the conducting regions, and to be null in non-conducting regions. The dielectric 
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permittivity ε is also assumed to be a uniformly positive definite symmetric tensor. The real scalar constant ω � = 0 is a 

given angular frequency. In addition, the symbol i denotes the imaginary unit, i.e., i = 

√ −1 , ∂� denotes the boundary of 

the domain �, � := �C ∩ �I , n | ∂� and n | � represent the unit outward normal vectors on � and on � pointing toward �I , 

respectively. Without causing confusion, we use n to simply represent n | ∂� and n | � . Here, E , H and J e are the electric field, 

the magnetic field and a given generator current, respectively. For a given vector field v defined in �, we denote by v L the 

restriction to �L , L = C, I. 

The hybrid formulation (1.1) uses as main unknowns the magnetic field in the conductor and the electric field in the 

insulator. It is a convenient approach for complicated geometrical configurations where the conductor �C is not simply 

connected, as unrelated or nonmatching meshes on �C and �I are possibly allowed to be used in its finite element approx- 

imation. See [1–4] for more details. 

By using the finite element method to discretize the hybrid formulation (1.1) (see [1,2] ), we can obtain the following 

linear system ⎛ ⎜ ⎝ 

S C + i M C D 

T B 

T 
C 0 

D i S I 0 B 

T 
I 

B C 0 0 0 

0 B I 0 0 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

H C ˜ E I 
Q 

�I 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

F C 
G I 

0 

0 

⎞ ⎟ ⎠ 

, (1.2) 

where S C ∈ R 

n 1 ×n 1 and S I ∈ R 

n 2 ×n 2 are symmetric positive semidefinite matrices, M C ∈ R 

n 1 ×n 1 is a symmetric positive definite 

matrix, B C ∈ R 

m 1 ×n 1 and B I ∈ R 

m 2 ×n 2 have full row ranks and D ∈ R 

n 2 ×n 1 is a real matrix. Let ̃  E I be a suitable magnetic vector 

potential such that H I = −(i ωμ) −1 curl ̃  E I and q , φI be two Lagrange multipliers. The complex valued unknown vectors H C , ˜ E I , Q and �I are the coefficients of the finite element approximations to H C , 
˜ E I , q and φI in the chosen bases of certain 

finite element subspaces, respectively. The complex valued right-hand side vectors F C and G I are obtained by applying the 

functionals f C and g I to the elements of the bases of certain finite element subspaces, with f C and g I being defined through 

proper integrals with respect to σ−1 J e,C and J e , I , respectively. For more details about these complex valued unknown and 

right-hand side vectors, we refer to [1,3] . 

The first Betti number of �I is a topological invariant measuring the number of nonbounding cohomologically indepen- 

dent cycles in �I (see, e.g., [5–7] ), and its value plays an important role in the solution of the saddle point problem (1.2) . 

When the first Betti number of �I is equal to zero, the saddle point problem (1.2) is referred to as simple topology; when 

the first Betti number of �I is greater than zero, the saddle point problem (1.2) is referred to as general topology; see [3] . 

(1) The case of simple topology 

From the point of algebra, the first Betti number of �I is equal to zero if and only if the matrix 

A I = 

(
i S I B 

T 
I 

B I 0 

)
(1.3) 

is nonsingular. In addition, since the matrix S I is symmetric positive semidefinite, we can easily show that A I is nonsingular 

if and only if the following two conditions hold 

(i) null (S I ) ∩ null (B I ) = { 0 };
(ii) null (B T 

I 
) = { 0 } . 

Here, we denote by null( · ) the kernel space of the corresponding matrix. Note that these two conditions readily imply 

that S I + τB T I B I is symmetric positive definite for any constant τ > 0. When the matrix S I is symmetric positive definite, we 

may set τ = 0 ; otherwise, we may let τ > 0. 

By pre-multiplying −i on both sides of the saddle point problem (1.2) , utilizing the equation B I ̃
 E I = 0 , and using the 

zero patterns in the coefficient matrix as well as the right-hand side vector, we can equivalently transform (1.2) into the 

following linear system 

A u := 

⎛ ⎜ ⎝ 

A 1 −i D 

T B 

T 
C 0 

−i D A 2 0 B 

T 
I 

−B C 0 0 0 

0 −B I 0 0 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

H C ˜ E I 
−i Q 

−i�I 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

−i F C 
−i G I 

0 

0 

⎞ ⎟ ⎠ 

:= b, (1.4) 

where 

A 1 = M C − i S C , A 2 = S I + τB 

T 
I B I . 

That is 

A u := 

(
A B 

T 

−B 0 

)(
y 
z 

)
= 

(
f 
0 

)
:= b, (1.5) 
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