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a b s t r a c t 

A Markov chain with memory is no different from the conventional Markov chain on the 

product state space. Such a Markovianization, however, increases the dimensionality ex- 

ponentially. Instead, Markov chain with memory can naturally be represented as a tensor, 

whence the transitions of the state distribution and the memory distribution can be char- 

acterized by specially defined tensor products. In this context, the progression of a Markov 

chain can be interpreted as variants of power-like iterations moving toward the limiting 

probability distributions. What is not clear is the makeup of the “second dominant eigen- 

value” that affects the convergence rate of the iteration, if the method converges at all. 

Casting the power method as a fixed-point iteration, this paper examines the local be- 

havior of the nonlinear map and identifies the cause of convergence or divergence. As an 

application, it is found that there exists an open set of irreducible and aperiodic transition 

probability tensors where the Z -eigenvector type power iteration fails to converge. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

A Markov chain is a stochastic process { X t } ∞ 

t=0 
over a finite state space S , where the conditional probability distribution 

of future states in the process depends upon the present or past states. The classical “Markov property” specifies that the 

probability of transition to the next state depends only on the probability of the current state. That is, among the states 

s i ∈ S , the model assumes that 

Pr (X t+1 = s t+1 | X t = s t , . . . , X 2 = s 2 , X 1 = s 1 ) = Pr (X t+1 = s | X t = s t ) . 

For simplicity, identify the states as S = { 1 , 2 , . . . , n } and assume that the chain is time homogeneous. Then a transition 

probability matrix P = [ p i j ] defined by 

p i j := Pr (X t+1 = i | X t = j) (1) 

is independent of t and is column stochastic. The above process, generally characterized as memoryless 1 , is a well studied 

subject in the literature. 

There are situations where the data sequence does depend on past values. As can be expected, the additional history of 

memory often has the advantage of offering a more precise predictive value. By bringing more memory into the random 

∗ Corresponding author. 

E-mail addresses: szwu@suda.edu.cn (S.-J. Wu), chu@math.ncsu.edu , mtchu@ncsu.edu (M.T. Chu). 
1 Strictly speaking, such a process should be called a chain with memory 1 in accordance with the definition (2) . 

http://dx.doi.org/10.1016/j.amc.2017.01.030 

0 096-30 03/© 2017 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2017.01.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2017.01.030&domain=pdf
mailto:szwu@suda.edu.cn
mailto:chu@math.ncsu.edu
mailto: \ignorespaces mtchu@ncsu.edu
http://dx.doi.org/10.1016/j.amc.2017.01.030


S.-J. Wu, M.T. Chu / Applied Mathematics and Computation 303 (2017) 226–239 227 

process, we can build a higher order Markov model. Interesting applications include packet video traffic in larger buffers 

[1] , finance risk management [2–4] , wind turbine design [5] , alignment of DNA sequences or long-range correlated dynamic 

systems [6–8] , growth of polymer chains [9,10] , cloud data mining [11,12] , and many others [13] . A Markov chain with 

memory m is a process satisfying 

Pr (X t+1 = s t+1 | X t = s t , . . . , X 1 = s 1 ) = Pr (X t+1 = s t+1 | X t = s t , . . . , X t−m +1 = s t−m +1 ) (2) 

for all t ≥ m . By defining 

Y t = (X t , X t−1 , . . . , X t−m +1 ) (3) 

and by taking the ordered m -tuples of X values as its product state space, it is easy to see that the chain { Y t } with suitable 

starting values satisfies the Markov property. In principle, upon exploiting the underlying structure, the transition process 

can be analyzed with the classical theory for memoryless Markov chain. Note, however, that the size of the aggregated 

chain, also known as the Markovianization, is considerably larger — of dimension n m −1 . Though mathematically equivalent, 

basic tasks such as bookkeeping multi-states and other associated operations will be fairly tedious 2 . 

In recent years higher-order tensor analysis have become an effective way to address high-throughput and multi- 

dimensional data by different disciplines. Markov chain with memory fits naturally such a tensor formulation. Assuming 

again time homogeneity, a Markov chain with memory m − 1 can be conveniently represented via the order- m tensor 

P = [ p i 1 i 2 ... i m ] defined by 

p i 1 i 2 ... i m := Pr (X t+1 = i 1 | X t = i 2 , . . . , X t−m +2 = i m 

) , (4) 

where P is called a transition probability tensor. Necessarily we have the properties that 0 ≤ p i 1 i 2 ... i m ≤ 1 and that 

n ∑ 

i 1 =1 

p i 1 i 2 ... i m = 1 (5) 

for every fixed (m − 1) -tuple (i 2 , . . . , i m 

) . What is most interesting is that the transitions among the states as well as the 

history of memory can be characterized by specially defined tensor products. Our goal in this paper is to recast such a 

process under the tensor formulation. In particular, we are interested in understanding the dynamics of the transition to the 

stationary distribution and the associated 2-phase power iteration scheme in the context of tensor operations. 

While some classical results in matrix theory can be extended naturally to tensors, there are cases where the nonlinearity 

of tensors makes the generalization far more cumbersome. The notion of eigenvalue is one such incident. Depending on the 

applications, there are several ways to mull over how an eigenvalue of a tensor should be defined [14–17] . Markov chain 

with memory and the associated transition probability tensor can serve as a practical model for exploring the following two 

notions of eigenvalues and their implications: 

1. The classical concept of eigenvalues when characterizing the evolution of the joint probability mass functions. 

2. The notion of Z -eigenvalue 3 when approximating the evolution of the state probability distribution. 

In this context, we study the role of the “second dominant eigenvalue” in such a dynamics of a Markov chain with 

memory. We also intend to address some practical issues arisen from a recent discussion in [10] which proposes to short 

cut the computation of the stationary state distribution by approximating the stationary joint probability mass function. 

These issues include whether the assumption used in proposing the Z -eigenvector computation is statistically justifiable and 

the anatomy of the true cause that affects the rate of convergence. The tool we are about to develop gives some insight 

into this limiting behavior. It is possible to generalize our framework to other types of eigenvalues for tensors, e.g., the so 

called H -eigenvalues [18] . For demonstration, we choose to concentrate only on the application to the transition probability 

tensors in this presentation. 

This paper is organized as follows. We begin in Section 2 with some basic properties of transition probability tensors. We 

review two types of dynamics necessarily involved in a Markov chain with memory, each of which entails a particular kind 

of tensor product. The evolution of the joint probability mass function itself follows a scheme similar to the conventional 

power method, whereas finding the stationary probability distributions of the state vector requires a 2-phase iteration. In 

Sections 3 , we argue that an appropriate rearrangement of the transition probability tensor reveals the proper cause of 

convergence for this classical type of evolution. In Section 4 we address some concerns arisen from the recent notion of 

approximating the stationary distribution by the dominant Z -eigenvector. We identify the true makeup of the “second”

dominant eigenvalue in the tensor setting. Most importantly, we show by counter examples that the convergence of this 

shortcut type of power method proposed in [10] is not always guaranteed. Included in the Appendix is the local analysis in 

a similar spirit for matrices, which probably offers an alternative explanation of convergence for the classical power method. 

2 See an example of vectorizing a Markov chain with memory 2 in Section 3 . 
3 Given an order- m tensor A = [ a i 1 ... i m ] ∈ R n ×... ×n and an n -dimensional vector x , real or complex, let the tensor product A x m −1 denote an n -dimensional 

vector whose i th entry is defined by 
∑ n 

i 2 , ... ,i m =1 a ii 2 ... i m x i 2 . . . x i m , 1 ≤ i ≤ n . If there exist a non-zero vector x and scalar λ such that A x m −1 = λx , then λ is 

called a Z -eigenvalue and x the corresponding Z -eigenvector of A . See [15,17] for the initial exploration of this subject. 
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