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Weighted singular value decomposition (WSVD) and a representation of the weighted 

Moore–Penrose inverse of a quaternion matrix by WSVD have been derived. Using this 

representation, limit and determinantal representations of the weighted Moore–Penrose 

inverse of a quaternion matrix have been obtained within the framework of the theory of 

noncommutative column-row determinants. By using the obtained analogs of the adjoint 

matrix, we get the Cramer rules for the weighted Moore–Penrose solutions of left and right 

systems of quaternion linear equations. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Let R and C be the real and complex number fields, respectively. Throughout the paper, we denote the set of all m × n 

matrices over the quaternion algebra 

H = { a 0 + a 1 i + a 2 j + a 3 k | i 2 = j 2 = k 2 = −1 , a 0 , a 1 , a 2 , a 3 ∈ R } 
by H 

m ×n , and by H 

m ×n 
r the set of all m × n matrices over H with a rank r . Let M( n, H ) be the ring of n × n quaternion ma- 

trices and I be the identity matrix with the appropriate size. For A ∈ H 

n ×m , we denote by A 

∗, rank A the conjugate transpose 

(Hermitian adjoint) matrix and the rank of A . The matrix A = ( a i j ) ∈ H 

n ×n is Hermitian if A 

∗ = A . 

The definitions of the generalized inverse matrices can be extended to quaternion matrices. 

The Moore–Penrose inverse of A ∈ H 

m ×n , denoted by A 

† , is the unique matrix X ∈ H 

n ×m satisfying the following equations 

[1] , 

AXA = A ; (1) 

XAX = X ; (2) 

(AX ) ∗ = AX ; (3) 

( XA ) ∗ = XA . (4) 
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Let Hermitian positive definite matrices M and N of order m and n , respectively, be given. For A ∈ H 

m ×n , the weighted 

Moore–Penrose inverse of A is the unique solution X = A 

+ 
M,N 

of the matrix Eqs. (1) and (2) and the following equations in X 

[2] : 

(3 M) (MAX ) ∗ = MAX ; (4 N) (NXA ) ∗ = NXA . 

In particular, when M = I m 

and N = I n , the matrix X satisfying the Eqs. (1) , (2) , (3 M ), and (4 N ) is the Moore–Penrose inverse 

A 

† . 

Generalized inverses and their using to solutions of matrix equations over the quaternion skew field (or arbitrary non- 

division ring) are subjects of current research (see, e.g., [3–12] ). 

It is known various representations of the weighted Moore–Penrose. In particular, limit representations have been consid- 

ered in [13,14] . Determinantal representations of the complex (real) weighted Moore–Penrose have been derived by full-rank 

factorization in [15] , by limit representation in [16] using the method first introduced in [17] , and by minors in [18] . A basic 

method for finding the Moore–Penrose inverse is based on the singular value decomposition (SVD). It is available for quater- 

nion matrices, (see, e.g. [24,25] ). In [25,27] , using SVD of quaternion matrices, the limit and determinantal representations 

of the Moore–Penrose inverse over the quaternion skew field have been obtained within the framework of the theory of 

noncommutative column-row determinants that have been introduced in [28] . 

In [29] , the weighted Moore–Penrose inverse A 

† 
M,N 

∈ C 

m ×n can be explicitly expressed by the weighted singular value 

decomposition (WSVD) which at first has been obtained by Cholesky factorization. In [30] , WSVD of real matrices with 

singular weights has been derived using weighted orthogonal matrices and weighted pseudoorthogonal matrices. 

Song at al. [31] and Song and Wang [32] have studied the weighted Moore–Penrose inverse over the quaternion skew 

field and obtained its determinantal representation within the framework of the theory of column-row determinants. But 

WSVD of quaternion matrices has not been considered and for obtaining a determinantal representation there was used 

auxiliary matrices which different from A , and weights M and N . 

The main goals of the paper are introducing WSVD of quaternion matrices and representation of the weighted Moore–

Penrose inverse over the quaternion skew field by WSVD, and then by using this representation, obtaining its limit and 

determinantal representations. Using the obtained analogs of the adjoint matrix, we plan to derive the Cramer rules for the 

weighted Moore–Penrose solutions of left and right systems of quaternion linear equations. 

In this paper we shall adopt the following notation. 

Let α := { α1 , . . . , αk } ⊆ { 1 , . . . , m } and β := { β1 , . . . , βk } ⊆ { 1 , . . . , n } be subsets of the order 1 ≤ k ≤ min { m , n }. By A 

α
β

denote the submatrix of A determined by the rows indexed by α, and the columns indexed by β . Then, A 

α
α denotes the 

principal submatrix determined by the rows and columns indexed by α. If A ∈ M( n, H ) is Hermitian, then by | A 

α
α| denote 

the corresponding principal minor of det A . For 1 ≤ k ≤ n , denote by L k,n := { α : α = ( α1 , . . . , αk ) , 1 ≤ α1 ≤ · · · ≤ αk ≤ n } 
the collection of strictly increasing sequences of k integers chosen from { 1 , . . . , n } . For fixed i ∈ α and j ∈ β , 

let 

I r, m 

{ i } := { α : α ∈ L r,m 

, i ∈ α} , J r, n { j } := { β : β ∈ L r,n , j ∈ β} . 
The paper is organized as follows. We start with some basic concepts and results from the theory of the row- 

column determinants and of Hermitian quaternion matrices in Section 2 . Weighted singular value decomposition and a 

representation of the weighted Moore–Penrose inverse of quaternion matrices by WSVD have been considered in Sec- 

tion 3.1 , and its limit representations in Section 3.2 . In Section 4 , we give the determinantal representations of the 

weighted Moore–Penrose inverse when the matrices N 

−1 A 

∗MA and AN 

−1 A 

∗M are Hermitian in Section 4.1 , and when 

they are non-Hermitian in Section 4.2 . In Section 5 , we obtain explicit representation formulas of the weighted Moore–

Penrose solutions (analogs of Cramer’s rule) of the left and right systems of linear equations over the quaternion skew 

field. In Section 6 , we give numerical examples to illustrate the main result. Finally, a brief conclusion is given in 

Section 7 . 

2. Preliminaries 

For the first time, the theory of column-row noncommutative determinants (i.e. determinants with noncommutative 

entries) has been introduced in [26] (in Russian) and as amended in [27] . 

For a quadratic matrix A = (a i j ) ∈ M( n, H ) can be define n row determinants and n column determinants as 

follows. 

Suppose S n is the symmetric group on the set I n = { 1 , . . . , n } . 
Definition 2.1 [27] . The i th row determinant of A = (a i j ) ∈ M( n, H ) is defined for all i = 1 , n by putting 

rdet i A = 

∑ 

σ∈ S n 
( −1 ) 

n −r ( a i i k 1 
a i k 1 i k 1 +1 

. . . a i k 1 + l 1 i 
) . . . ( a i k r i k r +1 

. . . a i k r + l r i k r ) , 

σ = 

(
i i k 1 i k 1 +1 . . . i k 1 + l 1 

)(
i k 2 i k 2 +1 . . . i k 2 + l 2 

)
. . . 

(
i k r i k r +1 . . . i k r + l r 

)
, 

with conditions i k 2 < i k 3 < · · · < i k r and i k t < i k t + s for t = 2 , r and s = 1 , l t . 
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