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a b s t r a c t 

In this paper, a compact alternating direction implicit (ADI) method, which combines the 

fourth-order compact difference for the approximations of the second spatial derivatives 

and the approximation factorizations of difference operators, is firstly presented for solving 

two-dimensional (2D) second order dual-phase-lagging models of microscale heat transfer. 

By the discrete energy method, it is shown that it is second-order accurate in time and 

fourth-order accurate in space with respect to L 2 -norms. Additionally, the compact ADI 

method is successfully generalized to solve corresponding three-dimensional (3D) problem. 

Also, the convergence result of the solver for 3D case is given rigorously. Finally, numeri- 

cal examples are carried out to testify the computational efficiency of the algorithms and 

exhibit the correctness of theoretical results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Over the years, microtechnologies (cf. [1–7,9–12] ), which often are closely relevant to heat transport through thin films 

and the high-rate heating on thin film structures, have been widely applied in industry, and have been tremendously de- 

veloped because of the great advancement of short-pulse laser technologies and their applications to micromanufacturing 

processes. Taking metal processing for example, there exist many important applications, such as, laser surface hardening, 

laser micro-machining, laser processing of diamond films from carbon ion-implanted copper substrates and laser patterning. 

As we know, microelectronic devices are often composed of the thin films of metals, of dielectrics such as SiO 2 , or Si semi- 

conductors. Generally speaking, the smaller the device size is, the quicker switching speed it has. However, the device size 

reduction makes the heat-generation rate rapidly increase, thus yielding a higher thermal load on the microdevice. Thereby, 

it is very essential to research the thermal behavior of thin films for predicting the performance of a microelectronic device 

or devising the preferable microstructure. 

Traditional heat conduction equation (i.e. diffusion equation) is derived using the combination of the conservation of 

energy principle and Fourier law, which are defined as follow 

−∇ · q + Q = ρC p 
∂T 

∂t 
(1.1a) 
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q (x , t) = −κ∇T (x , t) , (1.1b) 

respectively. Here q , T , κ , ρ , C p and Q are the heat flux, the temperature, the conductivity, the density, the specific heat 

and heat source, respectively. From (1.1a) –(1.1b) , we can observe that the heat flux and the temperature gradient across a 

material volume are supposed to arise at the same instant of time, that is q (x , t) = −κ∇T (x , t) . However, in the process of 

the heat transfers at a microscale direction, the heat flux and temperature gradient in this direction will occur at different 

times. In this case, Fourier law (1.1a) , which is invalid, is replaced by (cf. [4–7,9–12] ) 

q (x , t + τq ) = −κ∇T (x , t + τT ) , (1.2) 

where τ q and τ T are two corresponding phase lags. In the both sides of (1.2) , applying the Taylor series formula to expand 

(1.2) at ( x , t ), then a first-order approximation of (1.2) is derived as 

q + τq 
∂q 

∂t 
= −k 

[ 
∇T + τT 

∂ 

∂t 
(∇T ) 

] 
, (1.3) 

which is used along with (1.1a) to gives that 

1 

˜ α

∂T 

∂t 
+ 

τq 

˜ α

∂ 2 T 

∂t 2 
= �T + τT �

∂T 

∂t 
+ 

1 

κ

(
Q + τq 

∂Q 

∂t 

)
, (1.4) 

which ˜ α = k/ρC p . 

In recent years, a great deal of effort has been devoted to developing high-order numerical solvers for problems (1.4) . For 

example, a second-order finite difference method (FDM), compact FDM and approximate analytic method have been created 

for one-dimensional (1D) Eq. (1.4) in [4–6] , respectively. Also, second-order FDM and compact FDM for two-dimensional (2D) 

and three-dimensional (3D) Eq. (1.4) have been developed in [12] and [7,8] , respectively. Besides, other high-performance 

solvers including ADI FDM [13–15] , compact ADI method [16,17] , finite element method (FEM) [18,20] , finite volume element 

method (FVEM) [19] , Pseudospectral collocation method [21,22] , Douglas-Gunn time-splitting method [23] and Runge–Kutta 

method [24,25] , etc., have been established and examined, entirely. 

Comparably, utilizing the Taylor series formula to expand Eq. (1.2) at ( x , t ) and providing a second-order approximations 

with respect to τ q and τ T , and then combining this second-order approximation with Eq. (1.1a) , we can also deduce another 

second-order dual-phase-lag (DPL) model as follows 

1 

˜ α

∂T 

∂t 
+ 

τq 

˜ α

∂ 2 T 

∂t 2 
+ 

τ 2 
q 

2 ̃  α

∂ 3 T 

∂t 3 
= �T + τT �

∂T 

∂t 
+ 

τ 2 
T 

2 

�
∂ 2 T 

∂t 2 
+ 

1 

κ

(
Q + τq 

∂Q 

∂t 
+ 

τ 2 
q 

2 

∂ 2 Q 

∂t 2 

)
. (1.5) 

From the derivation of Eq. (1.5) , we can observe that higher order approximations are used in (1.2) . Hence, model (1.5) may 

be more accurate than model (1.4) as they are applied to describe microscale heat transfer. As a result, from the physical 

point of view, it is meaningful to develop excellent numerical method for solving Eq. (1.5) . 

Exact solutions to 1D Eq. (1.5) can firstly be given in the form of infinite double series of sine functions of the spatial 

variables by using the method of separation of variables in [10] . Then approximation solutions can be obtained by truncating 

these exact infinite series solutions. Moreover, the second-order FDM and fourth-order compact FDM are suggested for the 

numerical solutions of 1D Eq. (1.5) in [9] and [11] , respectively. However, very little attention has been paid to the solution 

of high-dimensional Eq. (1.5) . 

It is well-known that a large block tridiagonal system, which needs to be solved at each time step for high-dimensional 

problems, gives rise to highly computational burden. It is well-known that ADI methods can equivalently transfer the so- 

lution of a multi-dimensional problems into the solutions of series of independent 1D problems, thus tremendously saving 

time cost. Hence, for efficiently solving these complex problems, compact ADI methods, which preserve the high-order spa- 

tial accuracy of compact difference schemes and the high efficiency of ADI methods, are a preferable choice. 

In this paper, we discuss the application of the compact ADI methods to solve the following nonlinear initial boundary 

value problems (IBVP) 

A 

∂T 

∂t 
+ B 

∂ 2 T 

∂t 2 
+ C 

∂ 3 T 

∂t 3 
= α�T + D �

∂T 

∂t 
+ E�

∂ 2 T 

∂t 2 
+ f (x , t) , (x , t) ∈ � × [0 , ˆ T ] , (1.6a) 

T (x , t) = ψ(x , t) , (x , t) ∈ ∂� × [0 , ˆ T ] , (1.6b) 

T (x , 0) = φ(x ) , T t (x , 0) = ϕ(x ) , T tt (x , 0) = ν(x ) x ∈ �̄, (1.6c) 

in which x = (x, y ) ∈ � := (a 1 , b 1 ) × (a 2 , b 2 ) for two-dimensional case, or, in the case of three-dimensional (3D) case, x = 

(x, y, z) ∈ � := (a 1 , b 1 ) × (a 2 , b 2 ) × (a 3 , b 3 ) , and ∂� is the boundary of �, �̄ = � ∪ ∂�, A , B , C , D , E and α are positive 

constants. Moreover, let functions f ( x , t ), ψ( x , t ), φ( x ), ϕ( x , t ) and ν( x ) be smooth sufficiently so that our methods can 

attain the convergence rate and consistency claimed. 

2. Denotations and lemmas 

For temporal discretization, ∃ N ∈ Z 

+ , such that τ = 

ˆ T /N. Write t n = nτ, 0 ≤ n ≤ N . ∀ v n ∈ S �t = { v n | 0 ≤ n ≤ N} , introduce 

δt v n +1 / 2 = (v n +1 − v n ) /τ and v n + 
1 
2 = (v n +1 + v n ) / 2 . 



Download English Version:

https://daneshyari.com/en/article/5775797

Download Persian Version:

https://daneshyari.com/article/5775797

Daneshyari.com

https://daneshyari.com/en/article/5775797
https://daneshyari.com/article/5775797
https://daneshyari.com

